Linear Collider Physics
Analysis in Jupyter

Let's get started

* Logontoyourcomputer
* For OSG: ssh -L 80xy:localhost:80xy login.snowmass21.io
* x=0 y=9 is mine.
* Pick your own xand y.

 Downloadjulia
* For OSG: wget https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.0-linux-x86_64.tar.gz
* tar xzf julia-1.5.0-linux-x86_64.tar.gz
* julia-1.5.0/bin/julia

e Startjulia—thisisthe REPL (read-eval-printloop)
* Powerful support for different modes: e.g., shell, package, julia, C++ modes
*]add Hulia #] starts the package mode
* build Nulia
* Backspace to get back to julia mode

e Startthe notebook
* On your laptop
* usinglJulia
* notebook()
* On 0SG
* source /cvmfs/belle.cern.ch/tools/b2setup release-04-02-08
* jupyternotebook--no-browser--port=8009

https://julialang-s3.julialang.org/bin/linux/x64/1.5/julia-1.5.0-linux-x86_64.tar.gz

Running the notebooks

* Run the notebooks from
here: https://github.com/jstrube/LC with Julia examples/blob/main/Snowmass

/higgs recoil.ipynb
 You will see that it won't run!

* Not all necessary packages have been installed. The error message will tell you
what to do. Click on the + symbol to add a new cell and copy and paste the code
that the error message suggests.

* This is how you add new packages.

Add all packages that you see in the notebook (using xxx)
* If you follow in the REPL instead of the notebook, replace "StatsPlots" with "UnicodePlots"

* Run again
* You will see messages like "Precompiling...". This will take a while, but it's only necessary
after installing or updating packages.

In the meantime, let's move on with the slides.

https://github.com/jstrube/LC_with_Julia_examples/blob/main/Snowmass/higgs_recoil.ipynb

Julia —the "ju"” in Jupyter

e Support for multithreaded, concurrent, and distributed processing
* Unicode support for variables

* Interactive programming
* Multi-dimensional arrays (like numpy, but built-in)

* Rich ecosystem for technical computing
e Statistics: Distributions.jl, Turing.jl (probabilistic programming), ...
 Differential Equations: DifferentialEquations.jl, SciML.ai
* Deep Learning: Flux.jl, Knet.jl
* Plotting: Plots.jl (with different backends), PyPlot.jl (wrapper around matplotlib)
* Salespoint for me: Allows me to explore the data, and when | need a fast

function for serious work (e.g. a new calorimeter clustering), | can write it
in the same language | use for interactive exploration.

First steps in Julia

* Julia supports unicode: Enter \mu<TAB>
e UTF-8 is fully supported, but not everything has a \-shortcut

 Full support for matrices
X =randn((20, 10)) # makes a 20x10 matrix
e Y =X"#transposes the matrix

* |terations and printing similar to python
e for x in 0:10 println(x) end
* Note: no ":", but "end" to delimit blocks

* Functions don't need type parameters (but you can use them)
e F(x) = sin(x) is a function
e function F(x::Int64) sin(1.5x) end is another function with the same name.

* Return is optional. The value of the last statement in the function is returned.
function F(x::Float64) return sin(0.5x) end is also fine.

Some noteworthy differences to languages

you may be familiar with

* 1-based indexing by default

 Or, random, if you want

* Structs, yes, but no member functions
 Multiple dispatch instead

MAN, YOURE BEING IN(DNSISTENT
WITH YOUR ARRAY INDICES. SOME
ARE FROM ONE, S0ME FROM ZERD,

DIFFERENT TASKS CALL FOR
DIFFERENT CONVENTIONS. TO
QUOTE STANFORD ALGURITHMS
EXPERT DONALD KNUTH,

“WHO ARE You? How DID_
YOU GET IN MY HOUSE?
/

S

WAIT, WHAT?
(WELL, THATS WHAT HE

SAID WHEN | ASKED
Him ABOUT IT.

/

4 5

* Use the object as the first parameter of the function instead.

Example: C++: vec.size() Julia: length(vec)

* No semicolon required, no indentation or {} to delimit blocks

 |f ... end; for ... end, function ... end

https://github.com/giordano/RandomBasedArrays.jl
https://www.youtube.com/watch?v=kc9HwsxE1OY

Further information about Julia

e Starting point: https://julialang.org

* Documentation: https://docs.julialang.org/en/v1/

* Note that things that run in v1.0 are guaranteed to run in any v1.x, but do choose the
latest version to get more features.

* Other learning resources: https://julialang.org/learning/

* The recent community conference online has a good mix of
introductory and overview
material https://www.youtube.com/playlist?list=PLP8iPy9hna6TI2UH

Trm4jnlYrLklIcAROR

https://julialang.org
https://docs.julialang.org/en/v1/
http://Ohttps:/julialang.org/learning/
https://www.youtube.com/playlist?list=PLP8iPy9hna6Tl2UHTrm4jnIYrLkIcAROR

LCIO

« Common event data model for linear collider detector data
e SiD, ILD, CLICdp can freely share data and code and have done so extensively

* Used by Whizard to implement features that aren't supported by stdhep
(e.g. polarization)

* Open source https://github.com/iLCSoft/LCIO

* Implementations/ bindings in C++, Python, go, Java, Fortran, Julia

* API
Documentation: https://ilcsoft.desy.de/LCIO/current/doc/doxygen api/ht
ml/namespaceEVENT.html
 If LCIO uses obj.method(parl, par2), Julia uses method(obj, parl, par2)

* Not all methods are implemented or exported, yet. If you are missing anything,
please file an issue: https://github.com/jstrube/LCIO.jl/issues

https://github.com/iLCSoft/LCIO
https://ilcsoft.desy.de/LCIO/current/doc/doxygen_api/html/namespaceEVENT.html
https://github.com/jstrube/LCIO.jl/issues

