Fermilab BLS. DEPARTMENT OF Office of Science

The NOvA Physics Program

Peter Shanahan, for the NOvA Collaboration Snowmass Neutrino Frontier Workshop 3 September 2020

In partnership with:

Physics with Long Baseline Neutrino Oscillations

- Structure of mixing
 - Is there a new symmetry driving equal v_{μ} v_{τ} contributions to $v_3?$
 - Maximal mixing, θ_{23} =45°, sin²(θ_{23})=0.5
 - If not, does ν_3 have more $\nu_\tau,$ or more ν_μ
 - Lower octant vs upper octant of θ_{23}

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

- CP Violation
 - $P(v_{\mu \rightarrow} v_e)$ and $P(v_{\mu \rightarrow} v_e)$ differ depending on value of CP violating phase of PMNS matrix, δ
- Is there more to the picture?
 - Is there evidence of oscillations to flavors not participating in Neutral Current interaction?
 - Sterile Neutrinos
 - Non-standard interactions? Etc.?

- Mass Hierarchy
 - Is v₃ heaviest (normal) or lightest (inverted)?

🛟 Fermilab

NOvA

- Measure $v_{\mu} \rightarrow v_{\mu}$, $v_{\mu} \rightarrow v_{e}$, $v \rightarrow v$, for neutrinos and antineutrinos
 - Mass Hierarchy, Octant/Maximal Mixing, CP Violation
 - Search for phenomena outside 3-flavor mixing framework
 - Sterile Neutrinos, NSI
- Measure sub-dominant (P~0.05) $\nu_{\mu} \rightarrow \nu_{e}, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ with sensitivity to Matter Effect (±19%) and CP violation (-22%...+22%)
 - Powerful neutrino and antineutrino beam
 - Large Detector, location optimized for Mass Hierarchy and background suppression
 - Detector Technology Optimized for v_e Detection
- Non-oscillation topics
 - Neutrino cross-sections
 - Non-beam-neutrino studies
 - Supernova neutrinos, Exotic phenomena: Dark Matter, Magnetic Monopoles

- 200 Collaborators from 50 institutions in 7 countries.
- 24 Remote Operations Centers worldwide.

NuMI Beam

• 700 kW design power: $O(10^6) v$ delivered to Far Detector every 1.2 seconds

- ν and $\overline{\nu}$ beam modes selected by polarity of focusing horn current
- High purity ν_{μ} content

Fermilab

Far Detector (FD) in Ash River, MN 14 kt, 896 planes

60 m

- 293 tons, including muon catcher
- used to measure neutrino beam flavor and energy spectrum before oscillations

NOvA Detectors

15 m

15 m

NOvA Detector Design

Data-Taking since 2014

Far Detector Beam Data Set To Date: Protons-on-target (POT) to NuMI 13.6x10²⁰ (14 kt-equivalent) POT Forward Horn Current (neutrino beam) 12.7x10²⁰ POT in Reverse Horn Current (antineutrino beam)
756 kW hourly beam power record achieved

Fermilab

NOvA Milestones

- History
 - First meeting in 2002, collaboration formed in 2004.
 - DOE Project for Detectors & Accelerator/Beam Upgrades 2005-2014
 - Physics data started Feb. 2014, first result 2015.
 - 700 kW beam power achieved in Jan. 2017
- Multiple rounds of 3-flavor oscillation results, with increasing levels of sophistication
 - 1st use in HEP of particle-ID based on convolutional neutral network
 - Strongest evidence (4.4 sigma) for longbaseline electron antineutrino appearance

- Results in cross-sections, sterile neutrino limits, cosmic rays and astrophysics
- Publications
 - 10 Published
 - 3-flavor oscillations using neutrinos and antineutrinos, <u>PRL 123 (2019) 15, 151803</u>
 - Search for Multi-messenger Signals, <u>PRD</u>
 <u>101 (2020), 112006</u>
 - Neutral current coherent π⁰ production, <u>PRD 102 (2020), 012004</u>
 - 1 Accepted for publication
 - Supernova Neutrino detection in NOvA
 - 1 in journal review
 - Cross-section model tuning, <u>arXiv:2006.08727</u>
- 37 Ph.D.s awarded

NOvA Operations

- Shifts taken and expert support provided 24x7 from 25 Remote Operations Centers around the world
 - During Covid-19, web-based shifts run from home
- Far Detector and Laboratory Maintained and Operated by University of Minnesota
- Far Detector annual beam-weighted uptime typically above 99%

99.9% of 344,064 channels are typically active

‡ Fermilab

NOvA Event Selection - Cosmic Ray Rejection

- 1st long-baseline neutrino experiment on the surface
 - Effective cosmic ray rejection is critical

- 6 orders of magnitude rejection achieved with cuts and algorithms using lepton and event characteristics, directions, etc.
- Characterizing remaining background is also important
 - NOvA takes ~50x beam data in beam triggers, and another ~500x in periodic cosmic triggers

Zoom-in: v_{μ} candidate event

NOvA Event Selection - Deep Learning

- Convolutional Neural Networks: fully exploit detail of NOvA events.
- NOvA's Convolutional Visual Network was pioneering use of Deep Learning in HEP.
- Improvement in signal & background for ν_e was equivalent to 30% increase in exposure.

🛟 Fermilab

- We continue to gain improvements from Deep Learning in NOvA.
 - Ongoing progress in application of different network types and specific applications.
 - Networks developed for individual prong ID, energy estimation, hit clustering, etc.

3-flavor Oscillation Analysis - Using the Near Detector

Use ND v_e -like spectra to improve Far Detector v_e background prediction.

7 Fermilab

Use ND ν_{μ} and $\overline{\nu}_{\mu}$ data to tune custom GENIE 3.0.6 CMC

Importance of multinucleon scattering (2p2h) was an early surprise for NOvA

Several cross-section tuning iterations, including as described in arXiv:2006.08727

Extrapolation

- Original extrapolation
 - Adjust energy distribution to match ND MC to data, apply same adjustment to FD.
- Improvements
 - Extrapolate and fit v_{μ} in bins of reco. hadronic energy fraction (2018)
 - Improves sensitivity of ν_{μ} fit by grouping events by energy resolution.
 - Improves cross-section uncertainties by isolation of different cross-section effects.

- Extrapolate in bins of reco. lepton Pt.
 - Improved robustness with respect to effect of ND-FD acceptance differences on neutrino interaction modeling uncertainties.

Systematic Uncertainties

Systematic uncertainties are evaluated by modifying simulation throughout analysis chain.

Most significant uncertainties compared to the statistical uncertainty are Crosssections, calibration, acceptance effects.

Background Prediction

‡ Fermilab

Far Detector Data and Oscillation Fit

Muon Neutrino Disappearance

	Neutrino	Antineutrino
Observed	211	105
No Disappearance	1156	488
Best Fit Expectation	222	105
Background	8.2	2.1

 v_{μ} and v_{μ} spectra fit in bins of hadronic energy fraction and reconstructed energy

Electron Neutrino Appearance

	Neutrino	Antineutrino
Observed	82	33
Best Fit Expectation	85.8	33.2
Background	26.8	14.0
Wrong-sign	1.0	2.3
Beam bkgd.	22.7	10.2
Cosmic bkgd.	3.1	1.6

 v_e and v_e spectra fit in bins of selection purity and reconstructed energy

Oscillation Parameters from Joint Fit to Data

Note: plot does not reflect latest contours from other experiments

Oscillation Parameters from Joint Fit to Data

- Slight (1 sigma) preference for normal hierarchy, upper octant of θ_{23}
- Disfavors combinations of MH and δ_{CP} with strongest neutrino-antineutrino asymmetry in ν_µ→ν_e appearance
 - IH + $\delta_{CP} \sim \pi/2$ at > 3 sigma
 - NH+ δ_{CP} ~ $3\pi/2$ at > 2 sigma

Using θ_{13} from world reactor data.

Non-Standard Flavor-Change Phenomena

• NC is sensitive to disappearance from 3 active neutrinos - mixing with sterile

NOvA Cross-Section Physics

- Unique capabilities provided by
 - Narrow-band beam at 2 GeV
 - High-rate of interactions at Near Detector
 - High-purity neutrino and antineutrino modes
- Double-differential inclusive cross-section measuremer
 - ν_{μ} more than 1x10⁶ events
 - v_e more than 10,000 events in sample first double-differential measurement

NC Coherent π^0 Production

Phys. Rev. D 102 (2020) 012004

Astrophysics

- NOvA has sensitivity to Supernova Neutrinos at both detectors
 - NOvA subscribes to SNEWS.
 - NOvA internal data-driven trigger 50% efficiency
 - to 6.2 kpc for 9.6 solar-mass progenitor
 - to 10.6 kpc for 27 solar-mass progenitor
- NOvA has performed a broad search for any signal coincident with 28 gravitational wave alerts from LIGO/VIRO from Sept. 2015 to July 2019.
 - No signal candidates were found.
 - <u>PRD 101 (2020), 112006</u>
- NOvA is engaged in a variety of other cosmic-ray studies and searches for Exotic phenomena.

Activity in front-half of NOvA Far Detector in Random 5ms slice

Activity in front-half of NOvA Far Detector in 5ms slice of Betelgeuse Supernova

Looking Ahead

- NOvA will run until 2025
- Projections assuming 63x10²⁰ protons-on-target
- Beam Improvements
 - 1 MW-capable target recently installed.
 - Further improvements to target system taking place this summer will allow accepting up to 1 MW.
 - New Horn 1, Improvements to air and water handling
 - Planned reduction of losses in 8 GeV Booster may enable beyond 900 kW by 2022/23
 - Dampers and Collimators that are part of PIP-II Scope

Fermilab

Looking Ahead

A priori NOvA sensitivity to Mass Hierarchy vs. time

NOvA reaches 3 sigma sensitivity for between 30% and 50% of δ_{CP} values, depending on MH and sin²(θ_{23})

NOvA and the Global Picture

- Preference for CP violation has weakened with new T2K and NOvA Data
 - I. Esteban et al. (NuFit), arXiv:2007.14792
- NOvA result is in slight tension with T2K best-fit point (2 sigma)
- While both NOvA and T2K favor Normal Hierarchy individually, together they prefer Inverted Hierarchy
 - e.g., Kelly, et al., arXiv:2007.08526
- Could this be a hint of new physics?
 - Non-L/E dependent phenomena?
 - E.g., NSI: P. Denton, et al., arXiv:2008:01110,
 S. Chatterjee & A. Palazzo, arXiv:2008:04161
- Comparison of 810 km baseline
 to results from widely different baselines
 will likely be key to understanding the full picture

🛠 Fermilab

Looking Ahead, cont.

- Joint Analysis with T2K
 - The collaborations have been meeting since 2017 to forge an analysis path to understand the significant correlations and make full use of the complementarities.
 - Detector design, beam energy, baseline.
- Non-standard Oscillation Physics
 - Targeting world-leading reach for long-baseline sterile neutrino search with NC-disapp.
 - Long-baseline NSI searches in ν_{μ} and ν_{e} channels
- Cross-section measurements
 - A variety of neutrino and antineutrino measurements are in the pipeline.
 - High-statistics will permit triple-differential or quadruple-differential measurements.
- Astrophysics, Cosmic Ray, and Exotic Physics
 - Unique reach for lighter (<10¹⁰ GeV), slow monopoles thanks to large detector and small overburden
 - Expanded gravitational wave multi messenger search with LIGO/Virgo/KAGRA O4 run
 - n-n oscillations

Summary

- NOvA has new oscillation results.
 - Hint of tension with T2K
- Our rich and broad physics program will continue to 2025.
- Broadly applicable experience from NOvA
 - Operations
 - High-power target systems, Distributed Remote Operations
 - Computing
 - Handling large datasets, Reliance on HPC for generation of parameter contours
 - Software & Analysis Tools
 - Use of Convolutional Neural Networks for event ID
 - Two-detector Oscillation Analysis framework adopted by DUNE

MAY 2020

More details

Coming up: NOvA Test Beam Run

- Targeting reduction of leading detector response and energy calibration uncertainties
- Detector has been filled and commissioned
- New tertiary beamline at FTBF has been commissioned
- We are working on beam improvements and looking forward to coming run.

Data-Driven Cross-Checks

- NOvA has employed several data-driven cross-checks on modeling of detector response and physics processes.
- MRE Muon Removed, Electron (added)
 - Remove µ track from reconstructed data and MC events, replace with simulated electron

- Cosmic-induced bremsstrahlung, muon decay-in-flight
 - Validate PID performance

- Calibration
 - Detectors calibrated with cosmic-ray muons, checked with Michel Electrons, beam-induced protons, π^0

🛟 Fermilab

‡ Fermilab

Future sensitivity to Mass Hierarchy

‡ Fermilab

Detector Location

- 14 mrad (11km) off the NuMI beam axis
 - pion 2-body decay kinematics

$$E_v = \frac{0.43E_{\pi}}{1 + \gamma^2 \theta^2}$$

- Neutrino spectrum peaks near 1st oscillation maximum
- High energy tail is suppressed: reduced Neutral Current π^0 backgrounds
- As far as possible from Fermilab for maximum matter effect ⇒ Sensitivity to Mass Hierarchy

Neutrino Mixing

Weak interaction acts on flavor states

 ν_e, ν_μ, ν_τ

which are quantum-mechanical superposition of mass states

 $\begin{array}{l} v_{1}, v_{2}, v_{3} \\ |v_{\alpha}\rangle = U_{PMNS} |v_{i}\rangle, \alpha = e, \mu, \tau; i = 1, 2, 3 \\ \text{where } U_{PMNS} \text{ is a unitary } 3x3 \text{ matrix} \end{array} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 1 & 1 \end{pmatrix}$

parameterized by 3 mixing angles θ_{12} , θ_{13} , θ_{23} and one complex phase angle δ

$$\begin{pmatrix} c_{12}c_{13} & s_{12}c_{13} & s_{13}e^{-i\delta} \\ -s_{12}c_{23} - c_{12}s_{13}s_{23}e^{i\delta} & c_{12}c_{23} - s_{12}s_{13}s_{23}e^{i\delta} & c_{13}s_{23} \\ s_{12}s_{23} - c_{12}s_{13}c_{23}e^{i\delta} & -c_{12}s_{23} - s_{12}s_{13}c_{23}e^{i\delta} & c_{13}c_{23} \end{pmatrix}$$

 $c_{13}=\cos(\theta_{13}), s_{23}=\sin(\theta_{23}), etc.$

Neutrino Mass Hierarchy (Ordering)

• Discriminator of neutrino mass & mixing models

Fermilab

Jarlskog invariant: Scale of maximum CP-violating effect from the mixing

 $J = \sin(2\theta_{12})\sin(2\theta_{13})\sin(2\theta_{23})\cos(\theta_{13})\sin(\delta)/8$

Lepton sector: $0 \le |J_{PMS}| \le 0.03$ Quark sector: $J_{CKM} \le 0.00003$ Is CPV in U_{PMNS} related to the Baryon Asymmetry of the Universe?

Leptogenesis: CP-violating process created matter-antimatter asymmetry in leptons that was transferred to baryons in early universe

> See, e.g., M. Drewes at Neutrino 2018, DOI:10.5281/zenodo.1287033 Michal Malinsky's talk later today

‡ Fermilab

Long-baseline v_e Appearance

• $P(v_{\mu} \rightarrow v_{e}) \approx |\sqrt{P_{Atm}} + \sqrt{P_{Sol}}|^2$

Leading term $P_{Atm} = \sin^2\theta_{23} \sin^22\theta_{13} \sin^2[(A-1)\Delta]$ (A-1)²

 $\Delta = \Delta m^2_{31} L/4E$

 $\sin^2(\theta_{23}) \sim 0.5$, $\sin^2(2\theta_{13}) = 0.086$, so $v_{\mu} \rightarrow v_e$ is subdominant: $P_{Max} \sim 0.05$

sin²(θ₂₃) breaks the θ→45°-θ degeneracy of $ν_{µ} → ν_{µ}$ Sensitivity to the Octant of θ₂₃

A= $\pm \sqrt{2}G_F N_e 2E/\Delta m_{31}^2$ is Matter Effect: potential shift for v_e flavor from electrons in matter. + for neutrinos, - for antineutrinos. **Proportional to \Delta m_{31}^2 Sensitivity to Mass Hierarchy**

> Interference term $\sqrt{P_{Atm}} \sqrt{P_{Sol+}} \sqrt{P_{Sol}}$ depends on $J \sim sin(\delta)$ Sensitivity to CP Violation

NOvA Event Selection - Cosmic Ray Rejection

 1st long-baseline neutrino experiment on the surface - effective cosmic ray rejection is critical

- 6 orders of magnitude rejection achieved with cuts and algorithms using lepton and event characteristics, directions, etc.
- Characterizing remaining background is also important
 - NOvA takes ~50x beam data in beam triggers, and another ~500x in periodic cosmic triggers

Extrapolation

- Original extrapolation
 - adjust true energy distribution to match ND MC to data, apply adjustment to FD.
- Improvements
 - Extrapolate and fit v_{μ} in bins of reco. hadronic energy fraction (2018)
 - Improves sensitivity of ν_{μ} fit by grouping events by energy resolution
 - Isolates different cross-section effects

- Extrapolate in bins of reco. lepton Pt.
 - Improved robustness with respect to effect of ND-FD acceptance differences on neutrino interaction modeling uncertainties.

CVN Neutrino Flavor ID - Data and Simulation in Near Detector

Neutrino

Anti-Neutrino

‡ Fermilab

Candidate antineutrino interaction with neutron

Neutron Systematic

• Antineutrino interactions produce neutrons.

- Energy distribution of neutron candidates predicted in quasi-elastic v_{μ} events
- Current evaluation of uncertainty
 - Randomly remove energy for a fraction of lower energy neutron-induced energy depositions to improve data- simulation match.
 - Shifts average ${}^{(}\bar{\nu}_{\!\mu}^{}$ energy by 0.5% (1%)
 - Studies are ongoing.

More Fit Results

IH

Gaus. σ FC σ

1.04

p-value

0.300

	1- σ range
$sin^2 \theta_{23} NH$	[0.431 ; 0.487] U [0.530 ; 0.602]
$sin^2 \theta_{23}$ IH	[0.433 ; 0.492] ∪ [0.526 ; 0.595]
Δm_{32}^2 NHUO	[2.341 ; 2.482]
Δm_{32}^{2-} NHLO	[2.336 ; 2.449]
Δm_{32}^{2-} IHUO	[2.386 ; 2.513]
Δm_{32}^{2-} IHLO	[2.386 ; 2.502]
δ _{CP} NHUO	[0 ; 1.09] U [1.95 ; 2]
δ _{CP} NHLO	[0 ; 0.37] ∪ [0.84 ; 1.10] ∪ [1.81;2]
δ _{CP} IHUO	[1.22; 1.79]
δ _{CP} IHLO	[1.19 ; 1.59]
δ _{CP} NH	[0 ; 1.06] ∪ [1.82 ; 2]
δ _{CP} IH	[1.26 ; 1.73]

	\sim
~	VOVA

-	LO	0.69	1.21	0.224
-	NHLO	0.69	1.08	0.278
	IHUO	0.90	0.94	0.348
	IHLO	1.10	1.10	0.272

0.90

Cross-section Tuning

- 2p2h (Correlated nucleon pairs)
 - Disagreement of multiple experiments with models is well known.
 - Valencia MEC tuned to NOvA ND Data with 2-D gaussians in q_0 -IqI space
 - Generous systematic uncertainties covering normalization and kinematic shape
- Final State Interactions
 - Use external π scattering data primarily to set uncertainties
 - Required adjusting central value, change in overall cross-section was small

Test beam layout

- Detector consists of two 31-plane
 2x2 blocks + one horizontal plane
 at FTBF's MC7
- Exposed to MCenter-sourced e, μ, π, p, K, π⁰ tertiary beam with known momentum from 0.2 - 2.0 Gev/c
- Provide absolute measurement of detector response and cross-check of NOvA calibration chain

Alex Sousa, University of Cincinnati

Systematic Pulls

Wrong-sign contamination in antineutrino beam

‡ Fermilab

Long Baseline $v_{\mu} \rightarrow v_e$ Appearance Probability

Jarlskog Invariant

 $J_{CP}=\sin 2\theta_{12}\sin 2\theta_{13}\sin 2\theta_{23}\cos \theta_{13}\sin \delta_{CP}/8 \approx 0.03 \sin(\delta_{CP})$ - up to 1000x J(CKM)

v_e and \overline{v}_e Appearance Probabilities

Comparison of neutrino and antineutrino appearance for a specific baseline and energy

Assuming

- » No Matter Effect
- » No CP Violation
- » Maximal μ - τ mixing

CP Violation and Neutrino Mass Ordering

CP Violation

- » CPT theorem requires v_{μ} and \overline{v}_{μ} disappearance to be equal in vacuum
- » v_e appearance probabilities vary on an ellipse with δ_{CP}

Mass Ordering

- v_{μ} disappearance largely sensitive to $|\Delta m^2|$
- v_e appearance is sensitive to sign(Δm^2) via matter effect
 - due to presence of electrons in matter

~30% effect for NOvA baseline,
 11% for T2K

Shown for maximal θ_{23}

θ₂₃ Octant

 v_{μ} disappearance measures sin²(2 θ_{23})

 v_e appearance depends in leading order on $sin^2(\theta_{23})$

Bi-event rate plot

- Caveat: this picture suppresses energy dependence and other useful variables

7 Fermilab

Bi-event rate plot

- Caveat: this picture suppresses energy dependence and other useful variables

Systematic Uncertainties and Pt Extrapolation

‡ Fermilab

More sensitivity projections

