Liquid Argon TPC (LarTPC) detectors have a unique capability in measuring low energy neutrino signals. In this work, we study the DUNE sensitivity to the CP-violation phase using sub-GeV atmospheric neutrinos. LarTPCs would reconstruct with high accuracy the track and the energy of low-energy charged particles, allowing to infer the energy and direction of sub-GeV neutrinos with unprecedented...
Due to its long baseline, DUNE provides an excellent avenue to probe Earth’s matter effect and associated degeneracies. We study in detail the performance of DUNE to validate matter oscillation by excluding the vacuum scenario. Whatever be the values of oscillation parameters, we find that DUNE can feel Earth’s matter at more than 2$\sigma$ confidence level. The relative 1$\sigma$ precision in...
A core-collapse supernova (SN) can act as the perfect laboratory to probe fundamental neutrino physics. For example, a future galactic SN will present us with a naturally long baseline to probe new channels of neutrino decay. In this talk, I will discuss the impact of two-body decays of neutrinos on the neutronization burst of a core-collapse SN. Upcoming neutrino experiments like DUNE and...
I will talk about how to systematically study the physics beyond the standard model (BSM) in the neutrino oscillation experiments within the standard model Effective Field Theory (SMEFT) framework. In this way, the analysis of the data can capture large classes of models, where the new degrees of freedom have masses well above the relevant energy for the experiment. Moreover, it allows...
After the new data presented at the Neutrino2020 conference, the global picture of three-neutrino mixing has changed significantly: the hint for Normal Mass Ordering has decreased, and leptonic CP conservation is allowed within less than 1 sigma.
In this talk, I will scrutinize the origin and internal consistency of the global results. The latter allows to quantitatively assess whether...
We discuss the possibility to distinguish between Dirac and Majorana neutrinos in the context of the minimal gauge theory for neutrino masses, the B-L gauge extension of the Standard Model. We revisit the possibility to observe lepton number violation at the Large Hadron Collider and point out the importance of the decays of the new gauge boson to discriminate between the existence of Dirac or...
Indirect searches for signatures of corpuscular dark matter have been performed using all cosmic messengers: gamma rays, cosmic rays, and neutrinos. The search for dark matter from neutrinos is of particular importance since they are the only courier that can reach detectors from dark matter processes in dense environments, such as the core of the Sun or Earth, or from the edge of the...
We explore the potential of current and future liquid scintillator neutrino detectors of $\mathcal O (10)$ kt mass to localize a pre-supernova neutrino signal in the sky. In the hours preceding the core collapse of a nearby star (at distance $D$ less than or equal to $1$ kpc), tens to hundreds of inverse beta decay events will be recorded, and their reconstructed topology in the detector can...
Collective neutrino oscillations are predicted to occur in supernovae, neutron-star mergers, and potentially the early universe, with ramifications for the evolution and observables of these environments. This talk will survey our current understanding of the phenomenology, which has recently seen transformative developments. It will also overview the open questions that are poised to be...
In core-collapse supernovae and merging of neutron stars a very large number of neutrinos are produced and impact the subsequent evolution of these compact objects. In this work I study neutrino flavor oscillations under the influence of the self-energy induced by neutrino-neutrino interactions, called collective oscillations. I study the flavor evolution of a dense neutrino gas by considering...
Inelastic up-scattering of solar neutrinos during their passage through the earth can yield a flux of unstable right-handed neutrinos (RH$\nu$s) provided their mass is relatively light ($m<20$ MeV). These same particles can decay inside terrestrial detectors, producing visible signatures. For example if the up-scattering is mediated by a transition dipole operator the RH$\nu$ can deposit a...
Neutrino interactions with matter will set the neutrino luminosity, spectra, and duration of the neutrino signal from the next galactic core-collapse supernovae. Flavor oscillations will mix the signals from different neutrino species. The exciting prospect of fast flavor instabilities deep inside the supernova shock suggest that these processes occur at the same time and location, influencing...
Monoenergetic muon neutrinos with an energy of 236 MeV are readily produced in intense medium-energy proton facilities at Fermilab and J-PARC when a positive kaon decays at rest ($K^+ \rightarrow \mu^+ \nu_\mu$) in the beamline absorber.
These kaon decay-at-rest (KDAR) neutrinos offer a distinctive opportunity to study neutrino-nucleus interactions without having to deal with the...
Neutrino physics is reaching a percent level precision and account for radiative corrections is a necessary step in modern and future accelerator-based experiments. We introduce and calculate radiative corrections in neutrino physics. Firstly, neutrino-electron scattering provides a clean tool to constrain the neutrino flux. We provide the most precise up-to-date prediction for...
We find that a magnetic transition dipole moment between tau and sterile neutrinos can account for the XENON1T excess events. Unlike the ordinary neutrino dipole moment, the introduction of the new sterile mass scale allows for astrophysical bounds to be suppressed. Interestingly, the best-fit regions that are compatible with the SN1987A imply either boron-8 or CNO neutrinos as the source...
The physics surrounding neutrino mass and neutrino interactions presents key research opportunities in elementary particle physics, both in theory and in experiment. Paralleling the developments in those fields, advances in observational astrophysics and cosmology promise unprecedented precision in the measurement of cosmological quantities. In many cases, those quantities are shaped by how...
We discuss the implications in a core-collapse supernova environment of a light dark matter particle that sees the standard model exclusively through its interaction with neutrinos. We consider the case of a light dark matter candidate which couples to neutrinos through a heavy mediator, and examine parameter regimes of interest from the point of view of supernova cooling, neutrino decoupling,...
The existence of light sterile neutrinos / heavy neutral leptons below the electroweak scale is of great interest from the points of view of both theory and experiments. We will discuss some theoretical motivations for the existence of such light states in extended frameworks as well as the wide variety of phenomenology that they can give rise to.
The sensitivity of future neutrino experiments to oscillation parameters and BSM physics is highly dependent on the reduction of theoretical nuclear modeling systematics within the quasielastic regime. The usage of highly phenomenological or even classical nuclear models of Fermi motion, as well as nontrivial and inconsistent reweighting schemes, only adds to these woes. Also, many neutrino...
Atmospheric neutrino experiments can show the "oscillation dip" feature in data, due to their sensitivity over a large $L/E$ range. In experiments that can distinguish between neutrinos and antineutrinos, like INO, oscillation dips can be observed in both these channels separately. We present a data-driven approach $-$ that uses the asymmetry in the up and down events, binned in the...
The mechanism of the core-collapse supernova is not completely established and continues to fuel a lot of active research. With the advent of DUNE and HyperKamiokande, the neutrino burst from the next galactic core-collapse supernova will allow us to observe the development of the explosion in real time, during the first crucial ten seconds. The task is to understand how to read this signal,...
The coming decade is poised to witness an abundance of measurements with the potential of substantial improvements of our understanding of neutrino physics. Many of these measurements can be harnessed for unprecedented studies of both Lorentz and CPT invariance, two closely intertwined cornerstones of established physics. These symmetries may nevertheless be violated in many theoretical...
The hadron cascade model is an essential part of Monte Carlo neutrino event generators that governs the final-state interactions of knocked-out nucleons and produced pions. Working in the context of NuWro, we show that such a model, enriched with physically motivated modifications of nucleon-nucleon cross sections and incorporation of nuclear correlation effects, can reproduce experimental...
In this talk I will summarize our recent Snowmass LOI on “Microscopic approaches to neutrino-nucleus interactions”. The advent of high precision measurements of neutrinos and their oscillations calls for precise theoretical calculations of neutrino scattering cross sections on target nuclei utilized in the detectors. Over the past decade, ab initio methods based on realistic nuclear...
The energy spectrum of neutrinos at DUNE is peaked in the few GeV region, where quantifying nuclear model uncertainties arising from nonperturbative quantum chromodyanmics (QCD) effects is particularly challenging. A coherent set of theoretical frameworks is required to describe neutrino interactions with nuclei with the level of accuracy needed for the success of DUNE and other precision...
Chiral effective field theory (EFT) provides nuclear interactions as well as electroweak currents constructed in a rigorous framework that allows systematic improvement and uncertainty quantification. Multipole decomposition of the chiral EFT current operators is an essential first step in calculating quasielastic neutrino cross sections using several state-of-the-art methods in nuclear...
Knowing accurately the neutrino-nucleus cross section is of prime importance for extracting the neutrino properties from experimental data. In this endeavour, one crucial ingredient is the axial form factor of the nucleon.In this talk, we will discuss the implications of the recent lattice QCD results for neutrino-nucleus cross sections.
The observation of coherent elastic neutrino-nucleus scattering (CEνNS) performed, in 2017 with cesium iodide and in 2020 with liquid argon by the COHERENT experiment unlocked an innovative and powerful tool to study many and diverse physical phenomena.
CEνNS is a neutral current process induced by the exchange of a Z boson. It thus represents also a sensitive probe for non-standard...
We discuss how increased sensitivity in large direct detection experiments will allow to exploit them as effective neutrino detectors and probe neutrinos from different sources in complementary regimes to conventional neutrino detectors. On the other hand, large neutrino telescopes like Super-Kamiokande provide favorable targets for dark matter from cosmic ray interactions and accelerated in...
The multi-messenger astrophysics of compact objects presents diverse environments where neutrino flavor transformation may be important for nucleosynthesis and a detected neutrino signal. Development of efficient techniques for surveying flavor evolution solution spaces, which complement existing computational tools, could leverage progress in this field. To this end we explore statistical...
If large enough extra dimensions exist, the fundamental gravity scale may be as low as a few TeV to allow for the production of microscopic black holes in collisions of high energy particles. Cosmogenic neutrinos may reach the energy up to tens of EeV, which translates to the center of mass energy of more than 100TeV in neutrino-nucleon scattering, rendering the next generation of neutrino...
The connection between the Standard Model and a dark sector may take place in a variety of way, most generically through portal couplings. In this talk, I discuss an example where exploiting the neutrino portal as a stepping stone to the dark sector opens up a set of unexplored experimental signatures at neutrino, $e^+e^-$ colliders, and kaon experiments. I will focus on models with a new...