Concha Gonzalez-Garcia

PHENOMENOLOGY OF NEUTRINO OSCILLATIONS IN 2020

Concha Gonzalez-Garcia

(ICREA U. Barcelona & YITP Stony Brook)

SnowMass2021:TF11: Neutrino Theory Workshop. Sept 2qt, 2020

Vfit Global fit to neutrino oscillation data

oscillation data http://www.nu-fit.org

Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

$SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

With three generation of fermions

$ \begin{pmatrix} \boldsymbol{\nu}_{e} \\ e \end{pmatrix}_{L} \begin{pmatrix} u^{i} \\ d^{i} \end{pmatrix}_{L} \\ \begin{pmatrix} \boldsymbol{\nu}_{\mu} \\ \mu \end{pmatrix}_{L} \begin{pmatrix} c^{i} \\ s^{i} \end{pmatrix}_{L} \\ \begin{pmatrix} \boldsymbol{\nu}_{\tau} \\ \mu \end{pmatrix}_{L} \begin{pmatrix} t^{i} \\ u^{i} \end{pmatrix}_{L} \\ \tau_{R} t^{i}_{R} b^{i}_{R} $	$(1,2)_{-\frac{1}{2}}$ $(3,2)_{\frac{1}{6}}$	$(1,1)_{-1} (3,1)_{\frac{2}{3}} (3,1)_{-1}$
$ \begin{pmatrix} \nu_{\mu} \\ \mu \end{pmatrix}_{L} \begin{pmatrix} c^{i} \\ s^{i} \end{pmatrix}_{L} \\ \begin{pmatrix} \nu_{\tau} \\ \nu_{\tau} \end{pmatrix} \begin{pmatrix} t^{i} \\ t^{i} \end{pmatrix}_{L} \\ \tau_{R} t^{i}_{R} b^{i}_{R} $	$\left(\begin{array}{c} \boldsymbol{\nu_e} \\ e \end{array}\right)_L \left(\begin{array}{c} u^i \\ d^i \end{array}\right)_L$	$e_R u_R^i d_R^i$
$\begin{pmatrix} \nu_{\tau} \end{pmatrix} \begin{pmatrix} t^i \\ i \end{pmatrix} = \tau_R t^i_R b^i_R$	$\left(\begin{array}{c} \boldsymbol{\nu_{\mu}} \\ \mu \end{array}\right)_{L} \left(\begin{array}{c} c^{i} \\ s^{i} \end{array}\right)_{L}$	$\left \begin{array}{ccc} \mu_R & c_R^i & s_R^i \end{array} \right $
$\langle \tau \rangle_L \langle b^{\iota} \rangle_L$	$\left(\begin{array}{c} \boldsymbol{\nu_{\tau}} \\ \boldsymbol{\tau} \end{array}\right)_{L} \left(\begin{array}{c} t^{i} \\ b^{i} \end{array}\right)_{L}$	$\begin{bmatrix} \tau_R & t_R^i & b_R^i \end{bmatrix}$

There is no ν_R

Three and only three

Three and only three

Neutrinos in the Standard Model

The SM is a gauge theory based on the symmetry group

 $SU(3)_C \times SU(2)_L \times U(1)_Y \Rightarrow SU(3)_C \times U(1)_{EM}$

With three generation of fermions

 ν strictly massless

- By 2020 we have precisely observed (relevant new results in $\nu 2020$)
 - * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, MINOS **T2K, NO** ν **A**)
 - * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} and $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (MINOS T2K, NO ν A)
 - * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
 - * Reactor $\overline{\nu_e}$ disappear at $L \sim 1 \text{ Km}$ (**D-Chooz**, Daya Bay, **Reno**)

All this implies that L_{α} are violated and There is Physics Beyond SM

• By 2020 we have precisely observed (relevant new results in $\nu 2020$)

- * Atmospheric ν_{μ} & $\bar{\nu}_{\mu}$ disappear most likely to ν_{τ} (SK,MINOS, ICECUBE)
- * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ disappear at $L \sim 300/800$ Km (K2K, MINOS **T2K, NO** ν A)
- * Accel. ν_{μ} & $\bar{\nu}_{\mu}$ appear as ν_{e} and $\bar{\nu}_{e}$ at $L \sim 300/800$ Km (MINOS T2K, NO ν A)
- * Solar ν_e convert to ν_{μ}/ν_{τ} (Cl, Ga, SK, SNO, Borexino)
- * Reactor $\overline{\nu_e}$ disappear at $L \sim 200$ Km (KamLAND)
- * Reactor $\overline{\nu_e}$ disappear at $L \sim 1 \text{ Km}$ (**D-Chooz**, Daya Bay, **Reno**)

All this implies that L_{α} are violated and There is Physics Beyond SM

• The *starting* path:

Precise determination of the low energy parametrization

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

 $\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$: $\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$
 - * NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

The New Minimal Standard Model

- Minimal Extension to allow for LFV \Rightarrow give Mass to the Neutrino
 - * Introduce ν_R AND impose L conservation \Rightarrow Dirac $\nu \neq \nu^c$:

$$\mathcal{L} = \mathcal{L}_{SM} - M_{\nu} \overline{\nu_L} \nu_R + h.c.$$

* NOT impose L conservation \Rightarrow Majorana $\nu = \nu^c$

$$\mathcal{L} = \mathcal{L}_{SM} - \frac{1}{2}M_{\nu}\overline{\nu_L}\nu_L^C + h.c.$$

• The charged current interactions of leptons are not diagonal (same as quarks)

$$\frac{g}{\sqrt{2}}W^+_{\mu}\sum_{ij}\left(U^{ij}_{\text{LEP}}\,\overline{\ell^i}\,\gamma^{\mu}\,L\,\nu^j + U^{ij}_{\text{CKM}}\,\overline{U^i}\,\gamma^{\mu}\,L\,D^j\right) + h.c.$$

 \Rightarrow Flavour Oscillations:

$$P_{\alpha\beta} = \delta_{\alpha\beta} - 4\sum_{j\neq i}^{n} \operatorname{Re}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin^{2}\left(\frac{\Delta_{ij}}{2}\right) + 2\sum_{j\neq i} \operatorname{Im}[U_{\alpha i}^{\star}U_{\beta i}U_{\alpha j}U_{\beta j}^{\star}]\sin\left(\Delta_{ij}\right)$$

$$\frac{\Delta_{ij}}{2} = \frac{(E_i - E_j)L}{2} = 1.27 \frac{(m_i^2 - m_j^2)}{eV^2} \frac{L/E}{\text{Km/GeV}}$$

No information on ν mass scale nor Majorana versus Dirac

Flavour Osc in Vaccum vs Transitions in Matter

- In Vaccum when osc between 2- ν dominates: $P_{\alpha\alpha} = 1 - P_{\alpha\neq\beta} \qquad \text{Disappear}$ $P_{\alpha\neq\beta} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right) \text{Appear}$
 - $\Rightarrow \text{No information on Ordering of states (i.e sign(\Delta m^2)) nor octact of } \theta$ $\Rightarrow \text{For } L \gg E/\Delta m^2 \text{, (oscillation averaged)} \Rightarrow P_{\alpha\alpha} > \frac{1}{2}$

Flavour Osc in Vaccum vs Transitions in Matter

- In Vaccum when osc between 2- ν dominates: $P_{\alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right) \text{Appear}$
 - \Rightarrow No information on Ordering of states (i.e sign (Δm^2)) nor octact of θ \Rightarrow For $L \gg E/\Delta m^2$, (oscillation averaged) $\Rightarrow P_{\alpha\alpha} > \frac{1}{2}$
- If ν cross matter regions (Sun, Earth...) it interacts coherently
 - And Different flavours
 have different interactions :

 \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$

$$-i\frac{\partial}{\partial x}\begin{pmatrix}\nu_e\\\nu_X\end{pmatrix} = \left[\left[-\begin{pmatrix}V_e - V_X - \frac{\Delta m^2}{4E}\cos 2\theta & \frac{\Delta m^2}{4E}\sin 2\theta\\\frac{\Delta m^2}{4E}\sin 2\theta & \frac{\Delta m^2}{4E}\cos 2\theta \end{pmatrix} \right] \begin{pmatrix}\nu_e\\\nu_X\end{pmatrix}$$

 \Rightarrow *M*odification of mixing angle and oscillation wavelength (MSW)

Flavour Osc in Vaccum vs Transitions in Matter

- In Vaccum when osc between 2- ν dominates: $P_{\alpha \neq \beta} = \sin^2(2\theta) \sin^2\left(1.27 \frac{\Delta m^2 L}{E}\right) \text{ Appear}$
 - $\Rightarrow \text{No information on Ordering of states (i.e sign(\Delta m^2)) nor octact of } \theta$ $\Rightarrow \text{For } L \gg E/\Delta m^2 \text{, (oscillation averaged)} \Rightarrow P_{\alpha\alpha} > \frac{1}{2}$
- If ν cross matter regions (Sun, Earth...) it interacts coherently
 - \Rightarrow Effective potential in ν evolution : $V_e \neq V_{\mu,\tau} \Rightarrow \Delta V^{\nu} = -\Delta V^{\bar{\nu}} = \sqrt{2}G_F N_e$

 \Rightarrow Modification of mixing angle and oscillation wavelength (MSW)

• Mass difference and mixing in matter:

$$\Delta m_m^2 = \sqrt{\left(\Delta m^2 \cos 2\theta - 2E\Delta V\right)^2 + \left(\Delta m^2 \sin 2\theta\right)^2}$$
$$\sin(2\theta_m) = \frac{\Delta m^2 \sin(2\theta)}{\Delta m_{mat}^2}$$

 $P_{ee} = \frac{1}{2} \left[1 + \cos(2\theta_m) \cos(2\theta) \right]$ $\simeq \sin^2 \theta < \frac{1}{2}$ Dependence on θ octant \Rightarrow In LBL terrestrial experiments Dependence on sign of Δm^2 and θ octant

 \Rightarrow For solar $\nu's$ in adiabatic regime

iarcia

 3ν Flavour Parameters

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{b} & 0 & 0 \\ 0 & 0^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

3*v* **Flavour Parameters**

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i} & 0 & 0 \\ 0 & q^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

 3ν Flavour Parameters

Concha Gonzalez-Garcia

• For for 3 ν 's : 3 Mixing angles + 1 Dirac Phase + 2 Majorana Phases

$$U_{\text{LEP}} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta_{\text{cp}}} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta_{\text{cp}}} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{21} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} e^{i} & 1 & 0 & 0 \\ 0 & 0^{2} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

• Convention: $0 \le \theta_{ij} \le 90^\circ$ $0 \le \delta \le 360^\circ \Rightarrow 2$ Orderings

Global 6-parameter fit http://www.nu-fit.org Esteban, Maltoni, Schwetz, Zhou, MCG-G ArXiv:2007.14792 (to appear in JHEP)

See Talk by I. Esteban for details

See Talk by I. Esteban for details

See Talk by I. Esteban for details

"Near Future" for CPV and Ordering

NO ν A: Ordering

A priori NOvA sensitivity to Mass Hierarchy vs. time

03 Sep 2020 P. Shanahan I The NOvA Physics Program

To be further improved by ND280 upgrade etc. If CP is maximally violated, we have a good chance to reach 3σ .

F.Sanchez Sep 3rd talk

T2K: CPV

hzalez-Garcia

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP: "Hint" driven by T2K "fluctuation" fading ... CPC close to best fit
- Ordering: NO preference fading ...

Definite answers most likely only with upcoming experiments

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP: "Hint" driven by T2K "fluctuation" fading ... CPC close to best fit
- Ordering: NO preference fading ...

Definite answers most likely only with upcoming experiments

• Only three light states?

Beyond 3 ν **'s: Light Sterile Neutrinos**

• Several Observations which can be Interpreted as Oscillations with $\Delta m^2 \sim {
m eV}^2$

LSND, MiniBoone

 $u_{\mu} \rightarrow \nu_{e} \text{ and } \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

From LSND mid 90's to MiniBoone 1805.12028

Reactor Anomaly

Huber, 1106.0687 Mention *etal* ,1101.2755

New reactor flux calculation \Rightarrow Deficit in data at $L \lesssim 100$ m

Explained as $\bar{\nu}_e$ disappearance 2.3 σ with updated fluxes Berryman, Huber, 1909.09267

Gallium Anomaly

a Gonzalez-Garcia

Acero, Giunti, Laveder, 0711.4222 Giunti, Laveder, 1006.3244

Radioactive Sources (⁵¹Cr, ³⁷Ar)

in calibration of Ga Solar Exp;

 ν_e + ⁷¹Ga \rightarrow ⁷¹Ge + e^-

Give a rate lower than expected

Explained as ν_e disappearance Dimish significance to 2.3 σ with new nuclear shell-model wave func Kostensale etal 2019

Concha Gonzalez-Garcia

Light Sterile Neutrinos

• These explanations require $\mathcal{O}(eV)$ mass ν_s

• These explanations require $\mathcal{O}(eV)$ mass ν_s

• 2+2: Ruled out by solar and atm data ($\gtrsim 5\sigma$) Maltoni *etal* NPB 02

• These explanations require $\mathcal{O}(eV)$ mass ν_s

- 2+2: Ruled out by solar and atm data ($\gtrsim 5\sigma$) Maltoni *etal* NPB 02
- 3+1: Generically appearance $P_{e\mu} \sim |U_{ei}^* U_{\mu i}| \begin{cases} |U_{ei}| \text{ constrained by } P_{ee} & \text{disapp data} \\ |U_{\mu i}| & \text{constrained by } P_{\mu\mu} & \text{disapp data} \end{cases}$

Dentler etal, 1803.10661 4.7 σ tension between disapp and app

Searches for eV sterile neutrinos

This talk: (anti-) v_e disapearance only

$$P_{ee} = 1 - \sin^2 2\theta_{ee} \sin^2 \frac{\Delta m_{41}^2}{4E} \& \sin^2 2\theta_{ee} = |U_{e4}|^2 (1 - |U_{e4}|^2)$$

S. Schönert | TUM | Sterile neutrinos

pmachado@fnal.gov

Reactor antineutrino anomaly

And more data presented in $\nu 2020 \dots$

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP: "Hint" driven by T2K "fluctuation" fading ... CPC close to best fit
- Ordering: NO preference fading ...
- Only three light states?

App and disapp results in severe tension in 4th ν_s interpretation New VSBL reactor data? I take the 5th

Confirmed LE Picture and today's List of Q&A

- At least two neutrinos are massive \Rightarrow There is NP
- Three mixing angles are non-zero (and relatively large) \Rightarrow very different from CKM
- Leptonic CP: "Hint" driven by T2K "fluctuation" fading ... CPC close to best fit
- Ordering: NO preference fading ...
- Only three light states?

App and disapp results in severe tension in 4th ν_s interpretation New VSBL reactor data? I take the 5th

• Other NP at play?

Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$

Alternative Oscillation Mechanisms

- Oscillations are due to:
 - Misalignment between CC-int and propagation states: Mixing \Rightarrow Amplitude
 - Difference phases of propagation states \Rightarrow Wavelength. For Δm^2 -OSC $\lambda = \frac{4\pi E}{\Delta m^2}$
- ν masses are not the only mechanism for oscillations

Violation of Equivalence Principle (VEP): Gasperini 88, Halprin,Leung 01 Non universal coupling of neutrinos $\gamma_1 \neq \gamma_2$ to gravitational potential ϕ

Violation of Lorentz Invariance (VLI): Coleman, Glashow 97 Non universal asymptotic velocity of neutrinos $c_1 \neq c_2 \Rightarrow E_i = \frac{m_i^2}{2p} + c_i p$

Interactions with space-time torsion: Sabbata, Gasperini 81

Non universal couplings of neutrinos $k_1 \neq k_2$ to torsion strength Q

Violation of Lorentz Invariance (VLI) Colladay, Kostelecky 97; Coleman, Glashow 99 due to CPT violating terms: $\bar{\nu}_L^{\alpha} b_{\mu}^{\alpha\beta} \gamma_{\mu} \nu_L^{\beta} \Rightarrow E_i = \frac{m_i^2}{2p} \pm b_i$ $\lambda = \pm \frac{2\pi}{\Delta b}$

$$\lambda = \frac{\pi}{E|\phi|\delta\gamma}$$

$$\lambda = \frac{2\pi}{E\Delta c}$$

$$\lambda = \frac{2\pi}{Q\Delta k}$$

Alternative Mechanisms vs ATM ν 's

• Severly constrained (MCG-G, M. Maltoni PRD 04,07)

$$\begin{aligned} \frac{|\Delta c|}{c} &\leq 1.2 \times 10^{-24} \\ |\phi \, \Delta \gamma| &\leq 5.9 \times 10^{-25} \\ \text{At 90\% CL:} \quad |Q \, \Delta k| &\leq 4.8 \times 10^{-23} \text{ GeV} \\ |\Delta b| &\leq 3.0 \times 10^{-23} \text{ GeV} \end{aligned}$$

NP Hint?: Δm_{21}^2 **KamLAND vs SOLAR**

• BEFORE NU2020: With SK4 2055 days D/N and 2860 day spectrun

• Tension arising from:

Smaller-than-expected low-E turn-up in SK/SNO from MSW at global b.f.

 \Rightarrow "hint" of NP in propagation: NSI?

"too large" of Day/Night at SK $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$

Concha Gonzalez-Garcia

• AFTER NU2020: With SK4 2970 days data Slightly more pronounced low-E turn-up

Smaller of Day/Night at $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$ $A_{D/N,SK4-2970} = [-2.1 \pm 1.1]\%$ • AFTER NU2020: With SK4 2970 days data Slightly more pronounced low-E turn-up

Smaller of Day/Night at $A_{D/N,SK4-2055} = [-3.1 \pm 1.6(stat.) \pm 1.4(sys.)]\%$ $A_{D/N,SK4-2970} = [-2.1 \pm 1.1]\%$

• In NuFIT 5.0

 \Rightarrow Agreement of Δm^2_{21} between solar and KamLAND at 1 σ