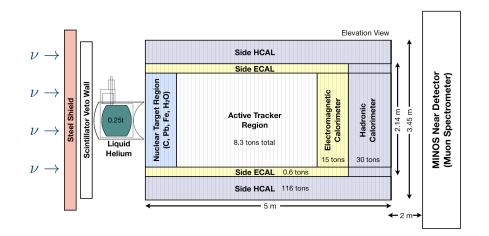
Data Preservation at MINERvA

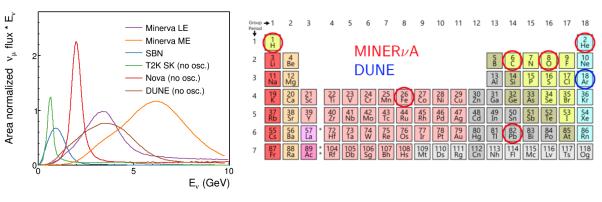
Rob Fine

Snowmass Neutrino Frontier 06 Neutrino Cross Section Data Usage and Archival Workshop

Observations from Day 1 of this Workshop


- We routinely revisit neutrino interaction data as our methods and understanding evolve
- We know from precedent that historical data remain relevant, though our ability to interpret them diminishes
 - "Many of us have participated in physics archaeology"
- What steps can we take now to maintain the utility of modern data 10+ years in the future?
 - "[Our measurements] will likely be used in ways we can't predict"
 - "Future-proofing data is hard"

MINER ν **A**


Rob Fine

4 September 2020

7

MINERvA Data are Relevant to DUNE

- High statistics at intermediate and high Q^2
- Measurements on multiple nuclear targets

4 / 17

MINERvA Data Support Many Measurements

- MINERvA data can be categorized by the configuration of NuMI:
 - "Low Energy" (LE) and "Medium Energy" (ME)
 - Forward horn current (FHC; ν_{μ} dominated)
 - Reverse horn current (RHC; $\bar{\nu}_{\mu}$ dominated)

	LE	ME
ν_{μ}	4.0	12.1
$\bar{ u}_{\mu}$	1.7	12.4

	LE	ME
$ u_{\mu}$	\gtrsim 300K	$\gtrsim 4M$
$\bar{ u}_{\mu}$	\gtrsim 50 K	$\gtrsim 2M$

	LE	ME
ν_{μ}	22	2 + ??
$\bar{\nu}_{\mu}$	10	??

Protons on target ($\times 10^{20}$) # CC-Inclusive Interactions # σ measurements

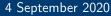
- MINERvA works to expand our understanding of neutrino interactions
 - ▶ High-dimensionality measurements (2D inclusive, 2D CCQE-like, 3D CCQE-like, (...))
 - Cutting-edge analysis techniques (Nuclear binding energy, νe scattering, TKI, $\langle ... \rangle$)

This is not a talk about how MINERvA data will be useful to the community for the next 10+ years...

(But you should invite us to give that talk, too...)

This is a talk about how MINERvA is taking steps to keep our data accessible for the next 10+ years

Rob Fine



Looking Forward

- MINERvA is no longer taking data
- The number of analyses undertaken by the collaboration will begin to exponentially decay starting in 2021
- We are working to preserve our data so that it remains usable by the community in the medium-term future
- This will also enable MINERvA to continue its analysis program in the near-term future as person-power declines

LOI submitted to Snowmass CompF07 and NF06

Data Preservation for Neutrino Physics

- In our view, there are two critical components to a successful data preservation campaign:
 - Access to the data
 - Infrastructure to analyze the data
- While historical data may technically be available, there is no precedent within modern neutrino physics of *infrastructure* to support its re-analysis

Data Preservation at MINERvA

- ► The MINERvA data preservation project consists of three components:
 - 1. Preservation of MINERvA data into a single ROOT tuple that incorporates low- and high-level reconstructed objects
 - 2. The MINERvA Analysis Toolkit (MAT) a broadly applicable HEP software toolkit for calculating systematic uncertainties using tuple objects
 - 3. A software package built on the MAT for reproducing MINERvA published results, which includes templates for performing new analyses.
- Component (1) provides access to the data, and components (2) and (3) provide the infrastructure to analyze the data

Component 1: The Tuple

- Historically, MINERvA analyses have each employed their own tailored ROOT tuples, using a powerful, but cumbersome, framework
 - Enables parallel development of distinct reconstruction techniques
 - Decentralizes the production of analysis tuples
 - Requires storage of many times the total data set
- ► The MINERvA data preservation project will utilize a unified tuple
 - Summarize the reconstruction for a broad variety of final states
 - Support a large number of analyses
 - Smaller disk footprint
 - Obviates the need to maintain the tuple-producing framework
 - Includes low-level reconstruction objects that could, in principle, be used for novel reconstructions
- ► This will include all LE/ME, FHC/RHC data and simulation

Aside: Balancing Priorities

- ► We cannot perfectly preserve the ability to do *anything* with our data
- One of the original goals that won't be achieved is developing a mechanism to generate new events in our preserved tuples
- We will maintain support for event reweighting, but this will be restricted in practice to the generated phase space
- Something to think about: Which (new) corners of phase space will be important in the future?

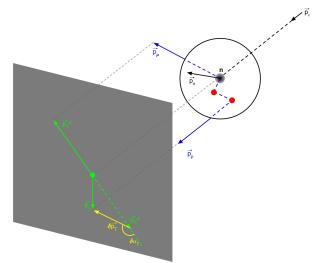
"[Our measurements] will likely be used in ways we can't predict" "Future-proofing data is hard"

Component 2: The MINERvA Analysis Toolkit

- Software toolkit for performing physics analyses
- Emphasis on handling of systematic uncertainties
 - Central role in analysis flow
 - Transparent treatment
 - Flexible, modular
 - Centralized, standardized across experiment
- Uses customized version of ROOT's $TH\{1,2\}D$ classes "MnvH $\{1,2\}D$ "
 - Handles all histograms corresponding to various systematic universes
 - Propagates systematic variations through histogram manipulations
 - ► Facilitate straightforward extraction of systematic uncertainty, correlations, etc.

Component 3: Analysis Scripts

- We plan to provide scripts that will reproduce MINERvA analyses using only the preserved data tuples and the MAT
- Users will have the flexibility to modify any aspect of existing MINERvA analyses, or to design completely new analyses (within reason)
- Users will have automatic access to the complete suite of common systematic uncertainties
- It will be straightforward to incorporate new reweighting schemes (e.g. to test future interaction models)



Example: Transverse Kinematic Imbalance

- Relatively new technique useful for probing intranuclear effects
- Utilizes novel kinematic variables
- Evidently historical data cannot be re-analyzed at the level of calculating new variables
- We strive to support future novel analysis techniques through:
 - Access to low-level reconstruction objects
 - Complete flexibility in the design of event-loop analysis

Link to Transverse Kinematic Imbalance paper

Rob Fine

Computational Requirements

- We expect the resources needed to analyze MINERvA data in the near-term to be relatively small
 - $\mathcal{O}(10)$ TB total disk footprint to store data
 - ▶ ~ 1 hour to process entire ME FHC data set with complete systematics (using O(100) FermiGrid nodes)
- ▶ We likely can continue to utilize FNAL resources for future analysis, but...
 - That limits access to the data to FNAL users
 - This solution doesn't necessarily extend to other experiments with much larger disk footprints
 - The access to these resources isn't guaranteed

Timing

- \blacktriangleright The timeline for making our data available is \sim late 2021
 - There is time to incorporate community feedback!
 - Is our plan consistent with your use-case?
- \blacktriangleright We expect some of our analysis tools (the MAT) to become available for early adopters in \sim early 2021
 - If this is something you are interested in, reach out to us!

THANK YOU

Points of Contact:

Data Preservation strategy Laura Fields (ljf26@fnal.gov) Debbie Harris (dharris@fnal.gov) Kevin McFarland (kevin@rochester.edu) MINERvA Analysis Toolkit Rob Fine (finer@fnal.gov) Ben Messerly (bmesserl@fnal.gov)

Rob Fine

BACKUP

