Office of

Fermilab NERGY Science

Marc Paterno
9 September 2020

Section 1

My summary

3% Fermilab
214 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

What is legacy code?

@ Code that doesn’t follow current “best practices”
@ so sometimes code is legacy the moment we write it
@ Not necessarily old (but often is)
@ What you are writing today is likely some day to be legacy
@ Should we update legacy code? What about “If it ain’t broke, don’t fix it"?
e Legacy code is hard to improve (add functionality, improve speed, etc.)
e Updating it has a cost. Failure to update also has a continued cost.
@ Updating legacy code can result in unexpected speed and memory use improvements.
e | have found this to be a common effect.

25 Fermilab
3/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Turn up the warning level

@ Make your build warning clear.
@ Better to have compiler find issues, rather than users — or paper readers.

@ Treat warnings as errors.
e Does your experiment already do this?
e Can you convince them to do so, if they do not?

Q: What do you do if a header you do not control generates a compiler warning?
Q: What do you do if your legal and correct code generates a compiler warning?

£ Fermilab

414 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Avoid conditional compilation

@ Conditional compilation uses #if defined or similar preprocessor macros to include
code.
@ What should be used instead?
e prefer function overload sets
e prefer templates
@ Kate and James suggest: #ifdef entire functions. | disagree.
@ My favorite comment on this technique (I do not recall the author): “Congratulations,
you have written platform multi-dependent code.”
@ | prefer to leverage the build system:
e Write functions (or classes, or templates) with the same name, and the same interface.
e Have the build system choose (maybe with user guidance) which one gets compiled and
linked (or just included, if all is in a header).

25 Fermilab
514 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Avoid macros

@ Why?
@ macros do not obey namespace rules
e the preprocessor does not know about types
e compiler error messages come from the generated code, not what the user sees

@ What should be used instead?
e prefer function overload sets
e prefer templates

@ Note that templates are not exactly a solution to the issue of poor error messages.
@ Sometimes you need a macro Commonly appear as part of a plugin-handling system.

Q: What other good uses of macros have you encountered?

£& Fermilab

6/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

RAIl and scope reduction

@ “Housekeeping” boilerplate obscures logic (closing files, releasing DB connections,
freeing memory, any other resource handling). Also, checking on “special” values of
inputs.

@ First suggestion: use if (...) and early return.

@ But what about the structured programming rule of having a single point of exit for a
function?

25 Fermilab
714 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

What was original idea behind single entry/single exit?

@ Very old paper by Edsger Dijkstra introducing ideas of structured programming
@ Promulgated in the era when subroutines were just being invented; really was talking
about regions of code is a program without subroutines.

@ Introduced the discipline necessary to make such code manageable.
e especially for things like making sure all resources were correctly released

@ In modern C++, with ubiquitous use of RAIl, this is already handled.
@ This is a rule for another era; it does not hold for modern C++.

25 Fermilab
8/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Use exceptions

@ This doesn’t seem to need belaboring in our community.

@ If anything, we need to remind people to limit the use of exceptions to code that can’t
handle a failure locally.

@ If your function throws and exception and catches it in the same function, you may be
doing it wrong. ...

25 Fermilab
914 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

const (almost) all the things

@ In session 2, Dan Saks told us that constqualifying the arguments of a function
definition (not declaration) was pointless.

@ Kate and James tell us that doing this is useful, because it helps show the intention of
the implementer of the function.

Q: With whom do you agree?

25 Fermilab
10114 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

What about constdata members?

@ A constobject can’t be modified — but that is just that object, not the type.

@ A type with const data members is immutable — no object of that type can be
modified.

@ But having a const data member suppresses compiler generation of assignment, and
can make move inefficient.

Q: Have you used const data members successfully?

£& Fermilab

1114 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Get rid of C-style casts

@ Just don’t do that. It is evil.

Q: What are good ways to identify C-style casts, to help in removing them?

25 Fermilab
12114 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Transform loops

@ Sean Parent’s talk “C++ Seasoning” is all about this.

@ Nested loops in code is one of the most prevalent cause of complexity in code, making
code hard to understand.

@ “typical 700 line loop” — loops that are this long are too difficult to understand, and
nearly impossible to test. Are you really sure you have tested all the branches in such
a function?

@ Lambdas make a world of difference in the use of algorithms to replace loops.

Q: When is a for loop better than use of std: : for_each?

Q: What breakthrough moments have you had with other algorithms?

Q: Have you ever used std: :rotate
Sean Parent seems to be able to do almost everything with std: :rotate.

JE H
3¢ Fermilab
13/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

Section 2

Discussion time!

3% Fermilab
14/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”

	My summary
	Discussion time!

