
Summary of “Modernizing Legacy C++ Code”

Marc Paterno

9 September 2020



Section 1

My summary

2/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



What is legacy code?

Code that doesn’t follow current “best practices”
so sometimes code is legacy the moment we write it

Not necessarily old (but often is)

What you are writing today is likely some day to be legacy

Should we update legacy code? What about “If it ain’t broke, don’t fix it”?
Legacy code is hard to improve (add functionality, improve speed, etc.)

Updating it has a cost. Failure to update also has a continued cost.

Updating legacy code can result in unexpected speed and memory use improvements.
I have found this to be a common effect.

3/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Turn up the warning level

Make your build warning clear.

Better to have compiler find issues, rather than users — or paper readers.

Treat warnings as errors.
Does your experiment already do this?

Can you convince them to do so, if they do not?

Q: What do you do if a header you do not control generates a compiler warning?

Q: What do you do if your legal and correct code generates a compiler warning?

4/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Avoid conditional compilation

Conditional compilation uses #if defined or similar preprocessor macros to include

code.

What should be used instead?
prefer function overload sets

prefer templates

Kate and James suggest: #ifdef entire functions. I disagree.

My favorite comment on this technique (I do not recall the author): “Congratulations,

you have written platform multi-dependent code.”

I prefer to leverage the build system:
Write functions (or classes, or templates) with the same name, and the same interface.

Have the build system choose (maybe with user guidance) which one gets compiled and

linked (or just included, if all is in a header).

5/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Avoid macros

Why?
macros do not obey namespace rules

the preprocessor does not know about types

compiler error messages come from the generated code, not what the user sees

What should be used instead?
prefer function overload sets

prefer templates

Note that templates are not exactly a solution to the issue of poor error messages.

Sometimes you need a macro Commonly appear as part of a plugin-handling system.

Q: What other good uses of macros have you encountered?

6/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



RAII and scope reduction

“Housekeeping” boilerplate obscures logic (closing files, releasing DB connections,

freeing memory, any other resource handling). Also, checking on “special” values of

inputs.

First suggestion: use if (...) and early return.

But what about the structured programming rule of having a single point of exit for a

function?

7/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



What was original idea behind single entry/single exit?

Very old paper by Edsger Dijkstra introducing ideas of structured programming

Promulgated in the era when subroutines were just being invented; really was talking

about regions of code is a program without subroutines.

Introduced the discipline necessary to make such code manageable.
especially for things like making sure all resources were correctly released

In modern C++, with ubiquitous use of RAII, this is already handled.

This is a rule for another era; it does not hold for modern C++.

8/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Use exceptions

This doesn’t seem to need belaboring in our community.

If anything, we need to remind people to limit the use of exceptions to code that can’t

handle a failure locally.

If your function throws and exception and catches it in the same function, you may be

doing it wrong. . .

9/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



const (almost) all the things

In session 2, Dan Saks told us that constqualifying the arguments of a function

definition (not declaration) was pointless.

Kate and James tell us that doing this is useful, because it helps show the intention of

the implementer of the function.

Q: With whom do you agree?

10/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



What about constdata members?

A constobject can’t be modified — but that is just that object, not the type.

A type with const data members is immutable — no object of that type can be

modified.

But having a const data member suppresses compiler generation of assignment, and

can make move inefficient.

Q: Have you used const data members successfully?

11/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Get rid of C-style casts

Just don’t do that. It is evil.

Q: What are good ways to identify C-style casts, to help in removing them?

12/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Transform loops
Sean Parent’s talk “C++ Seasoning” is all about this.

Nested loops in code is one of the most prevalent cause of complexity in code, making

code hard to understand.

“typical 700 line loop” — loops that are this long are too difficult to understand, and

nearly impossible to test. Are you really sure you have tested all the branches in such

a function?

Lambdas make a world of difference in the use of algorithms to replace loops.

Q: When is a for loop better than use of std::for_each?

Q: What breakthrough moments have you had with other algorithms?

Q: Have you ever used std::rotate

Sean Parent seems to be able to do almost everything with std::rotate.

13/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”



Section 2

Discussion time!

14/14 9 September 2020 Paterno | Summary of “Modernizing Legacy C++ Code”


	My summary
	Discussion time!

