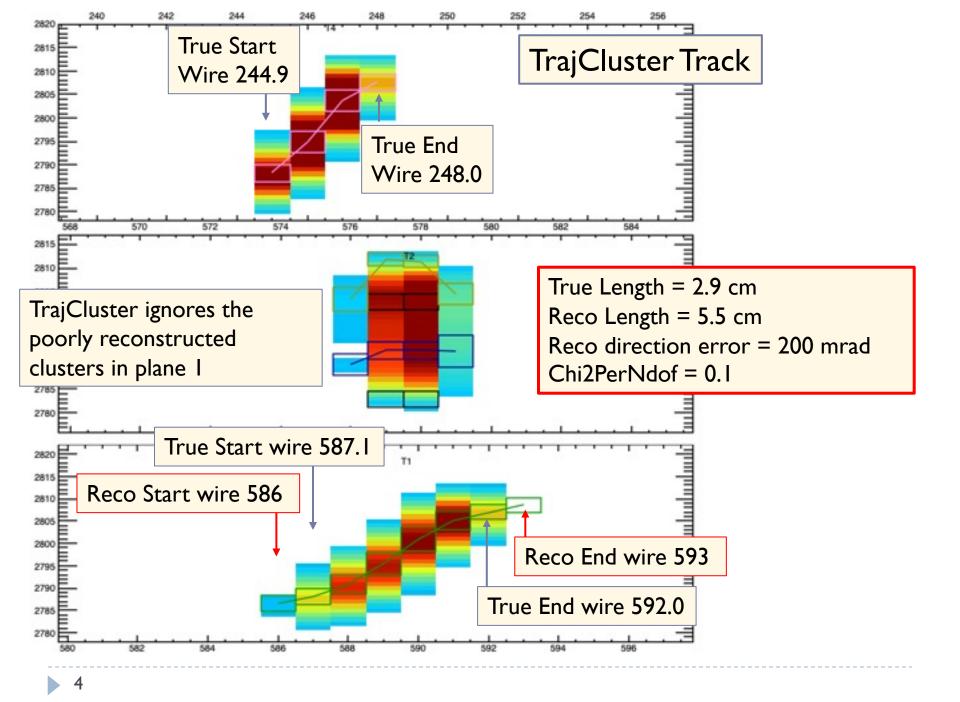
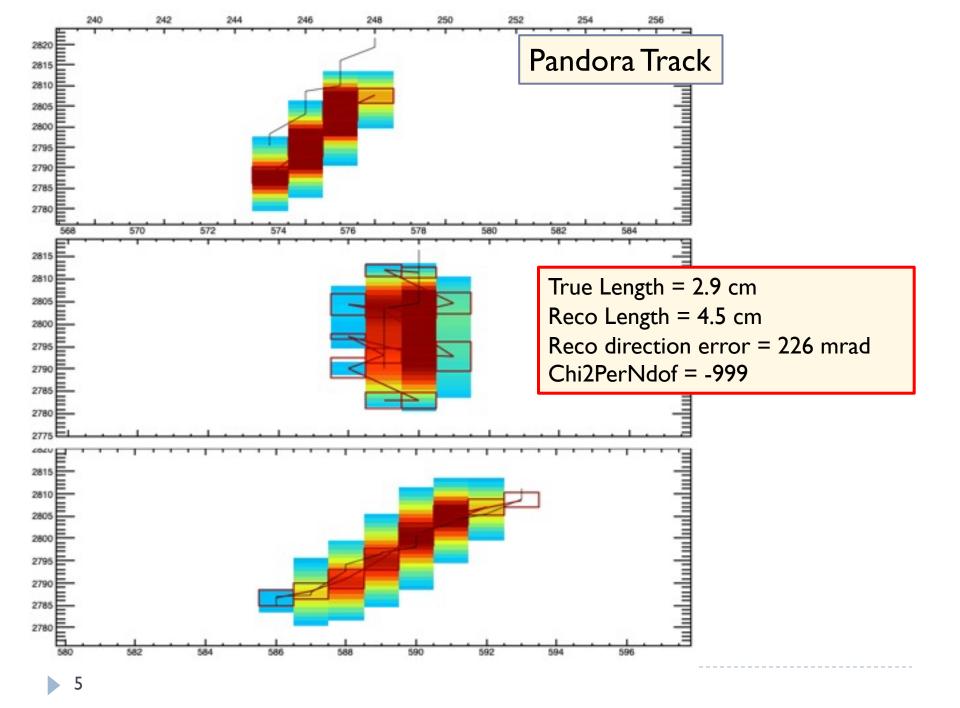
Track Calorimetry Issues

Bruce Baller August 25, 2020

Motivation

- I am testing a TrajCluster upgrade to produce Tracks with TrackHitMeta and SpacePoint collections
- Tests exposed an inaccuracy in how the Calorimetry module uses Track trajectory and TrackHitMeta data
- This is significant for short tracks


The Problem


Short track calorimetry suffers from several effects

- "Short" = 10 30 points in three wire planes
 - Example: 50 MeV (KE) protons
 - Generally at large angle wrt the wire planes
- Large wire spacing (DUNE 0.47 cm) results in large values of dx (pitch > ~I cm) in the dE/dx calculation
- Transverse diffusion in long drift TPCs is not negligible
 - σ_T ~ 0.3 cm at max drift in DUNE
- Calorimetry module assumes that a track stops directly over a wire on average → large uncertainty in dE/dx vs residual range → large uncertainty in PID

Example on the next slide

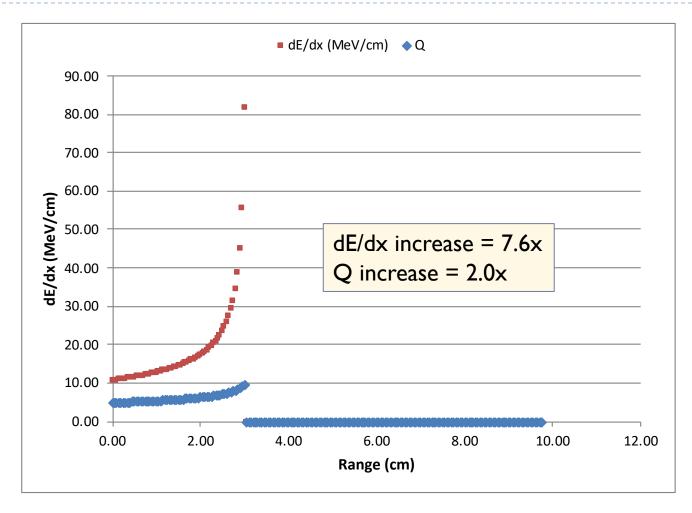
- MC proton, T = 56 MeV, p = 331 MeV, range = 2.9 cm
- No SCE
- Generated by Tingjun for this study

Truth Study using Bethe-Bloch in Excel *DUNE doc* #19353

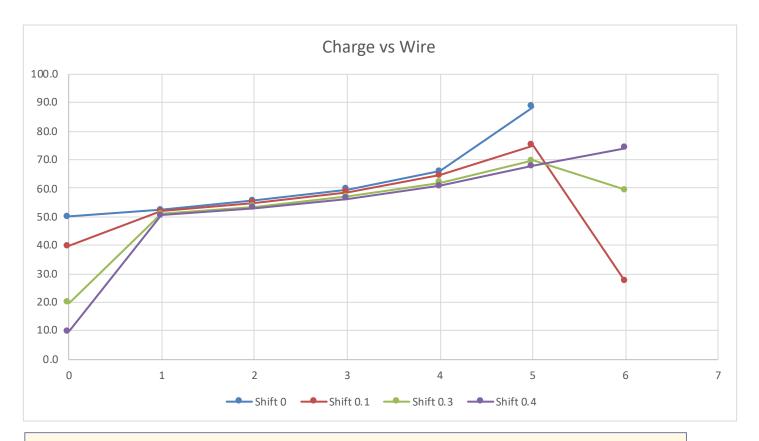
Used to develop the PIDA algorithm

- Calculates dE/dx, energy loss, recombination and charge (Q) for user-selected step size and initial kinetic energy
- Charge Q = $(\mathcal{R} * dE/dx)$ is summed on pseudo-wires

Set so that the proton range is 6.00 wires


Start T	57.049	MeV
Step	0.050	cm
Range	3.025	cm

Recom A	0.8	3	
Recom k	0.0486		
Efield	0.5	kV/cm	$\mathcal{R} = E$
Wire Space	0.5	cm	

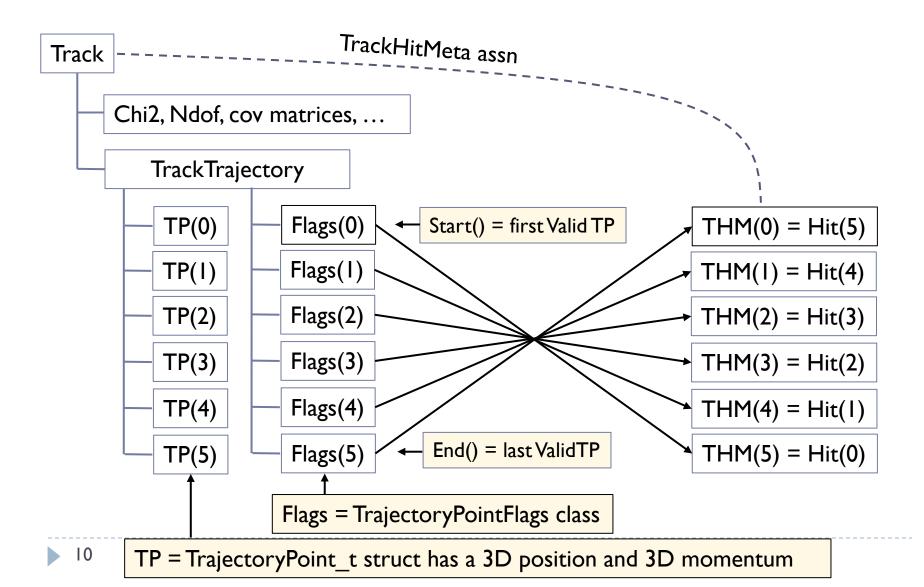

Birks recombination

			dE/dx	E Dep	Bin		flt	int		Chg *
Range (cm)	Res Range	T (MeV)	(MeV/cm)	(MeV)	Frac	R	Wire	Wire	Chg	fltWire
	3.03	57	10.77	0.5	1.00	0.46	1.050	1	4.90	5.15
0.05	2.98	57	10.85	0.5	1.00	0.45	1.150	1	4.92	5.66
0.10	2.93	56	10.93	0.5	1.00	0.45	1.250	1	4.94	6.18
0.15	2.88	55	11.01	0.6	1.00	0.45	1.350	1	4.97	6.70
0.20	2.83	55	11.09	0.6	1.00	0.45	1.450	1	4.99	7.23
0.25	2.78	54	11.18	0.6	1.00	0.45	1.550	1	5.01	7.76
0.30	2.73	54	11.27	0.6	1.00	0.45	1.650	1	5.03	8.30

dE/dx and Charge vs Range

Deposit Q on Pseudo-Wires Shift the start point by (0, 0.1, 0.3, 0.4) cm

Track Length() will usually be reconstructed as 3.5 cm. This will result in a PID hypothesis uncertainty.


Refine the End Point Positions

• Example using the last two hits <u>at the Bragg peak</u>

- Better results using charge ratio pattern matching of ~6 hits
 - This method was used in the ArgoNeuT recombination study
 - It should work at the Start end as well
- Issues
 - IntersectionPoint(wire1, wire2, ..., y, z) integer wire accuracy is insufficient
 - Need a better representation for recob::Track Start and End

Current recob::Track Conventions

Comments, Opinions and a Question

- C: Flags are not fully utilized by track modules
 - Ex: Hitlgnored, NoPoint (aka not Valid), Suspicious, Shared, DetectorIssue
 - O: TPs that are Shared with another track shouldn't be used for calorimetry
- ▶ C: TrackHitMeta data provides a Hit \rightarrow Track assn
 - O:There should be a Hit \rightarrow TP assn
 - C: Calorimetry throws an exception if there is not a one-to-one TrackHitMeta TP assn
- C: The Track Start (End) method returns the position of the first (last) Valid point
 - C:The Calorimetry module has a "work-around" to set the stopping point = ResidualRange[0] = 1/2 * track pitch
 - O:The Start and End positions should be defined by the Track module
- C: It is implicit that Valid Trajectory points are ordered from Start position to End position
- O: Ideally, Flags and TrackHitMeta would be packaged in the TrajectoryPoint_t struct
 - > This feature might be accomplished using Gianluca's track proxy class
- Q: Should the Start() of a track that is attached to a vertex be the vertex position or should it be the first Valid hit?

Proposal

- Track modules insert two special TPs to define the Start and End positions
 - The positions are defined using an algorithm like that described on slide 9
 - Define two new TP FlagTraits: TrackStart and TrackEnd
 - No hits are associated with these TPs, but they need to be Valid and be the first and last Valid points in the trajectory
 - Requires modifications to Calorimetry_module and maybe other
 - Hit charge in the (!Valid) TPs outside of the Start End range would need to be included in the sum of the total track charge
- Add an IntersectionPoint method that allows using wires with float precision