
Constraints on I/O
from HEP Data
Processing

Dr Christopher Jones FNAL

Framework Constraints on IO CCE-IOS 8/2020

Goal for Multi-Core
Both ATLAS and CMS use multi-core frameworks
CMS uses threads
ATLAS uses multi-process with forking and is moving to allow threads as well

Primary motivation was for CPU memory
Amortize memory needs across multiple cores

Provision for average not peak
A node is usually shared by multiple jobs

On a grid site such jobs may not all be for the same experiment
A job can be scheduled onto a node based on average event memory not max

works if events with large memory needs are relatively rare

Share resources across Events
ATLAS and CMS have large amounts of immutable data needed for processing

Geometry descriptions
Calibration values
Neural Network descriptions

Some mutable data is also shared
Memory buffers for I/O are shared via synchronization

2

Framework Constraints on IO CCE-IOS 8/2020

Interval of Validity
Data shared across Events can change

Interval of Validity (IoV)
The range of time (i.e. span of Events) for which a given piece of data is valid

To minimize memory use want to minimize # open IoVs
Puts a constraint on which groups of Events to process concurrently
Within an IoV based group the processing order of the Events does not matter

3

Framework Constraints on IO CCE-IOS 8/2020

IoV Example

Optimal Event processing groups based on IoVs
1-5
6-7
8-9

Order of Events in source can drive processing order
Want Events on disk from same processing group to be near each other
Alternatively low cost random access ability to read Events in best order

4

IoVs

Events 1 2 3 4 5 6 7 8 9

1

1 2

1 2

A

B

C

Framework Constraints on IO CCE-IOS 8/2020

Event data is not a monolithic structure
Composed of independent data products

Data products can be accessed individually
Memory footprint of data products vary widely

Structure of Event Data

5

A B C D E

Framework Constraints on IO CCE-IOS 8/2020

Data Requests per Event
Frameworks schedule algorithms to run when data available
Algorithms needing data only from source typically run first

Some Event data are only intended for debugging
Not all data stored in an Event needs to be read for each job

Not all data products from an Event are needed at the same time
Reading and deserialization of data products can be done as needed

Algorithms within the Event are allowed to run concurrently
Different data products can be concurrently requested

6

Framework Constraints on IO CCE-IOS 8/2020

Concurrent Event Processing
Frameworks process Events concurrently
Algorithms may process Events in different orders
Algorithm A might process Event 1 then Event 2
Algorithm B might process Event 2 then Event 1

Events process at different rates
Quite common for order of finishing of Events to be different from order of
starting events

Data products from different Events may be requested in
different orders
Data products from different Events may be ready for storage in
different orders
Forcing a strict ordering on Event data reads/writes will
decrease threading efficiency
E.g. requiring all data products of Event 1 to be read before Event 2

That would include reading from disk, decompressing and deserializing
E.g. requiring all data products of Event 1 to be written before Event 2

That would include serializing, compressing and then writing to disk

7

Framework Constraints on IO CCE-IOS 8/2020

Storage Opportunities
Want to be able to write Events ‘out of order’
Write Event data products the moment an Event finishes

Want to be able to read Events ‘out of order’
Sequentially read Events in the same IOV group even if written out of order

Would like to be able to write data products ‘out of order’
E.g. product A writes data for Event 1 then Event 2
E.g. product B writes data for Event 2 then Event 1

Would like to be able to read data products ‘out of order’
E.g. product A gets read for Event 1 then Event 2
E.g. product B gets read for Event 2 then Event 1

Would like to be able to do concurrent reads/writes of Events
and data products

8

Framework Constraints on IO CCE-IOS 8/2020

Storage Opportunities 2
Compressing/decompressing can happen concurrently
For same data product in different Events
for different data products within the same Event

Serialization/deserialization can happen concurrently
For same data product in different Events
For different data products in the same Event

Read/decompress/deserialize can be different steps
Do not have to do as 1 function call
Reads could be serialized while other parts are run in parallel
Framework could do optimal scheduling

Serialize/compress/write can be different steps
Writes could be serialized while other parts are run in parallel

9

Framework Constraints on IO CCE-IOS 8/2020

ROOT Storage
Stores data products mostly independently
ROOT uses the term Branches

The same data products for multiple Events are stored together
They are compressed together

E.g. all Tracks for a group of Events will be stored on disk contiguously
The number of Events grouped can be different for each data product
ROOT uses the term Basket

All data products must store Events in the same order
No data products can process next Event until all data products finish present
Event
ROOT uses the term Tree which is a collection of related Branches

Data associated to a group of sequential events can be flushed
Form a Cluster on disk

Can random access data products
Can independently request a data product from a particular Event

10

