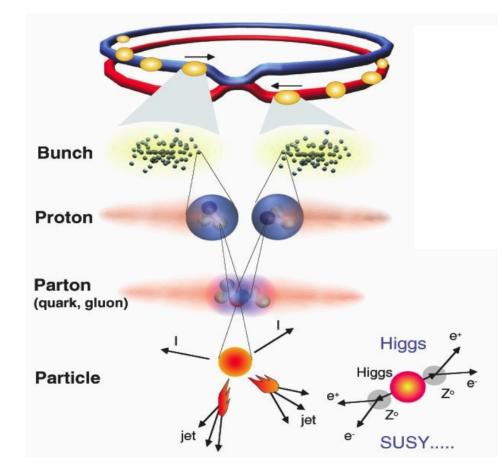
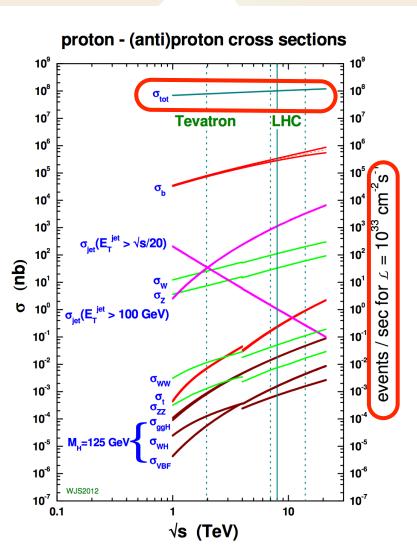


The ATLAS Trigger & Data AcQuisition (TDAQ) System


Catrin Bernius (SLAC) on behalf of the ATLAS Collaboration

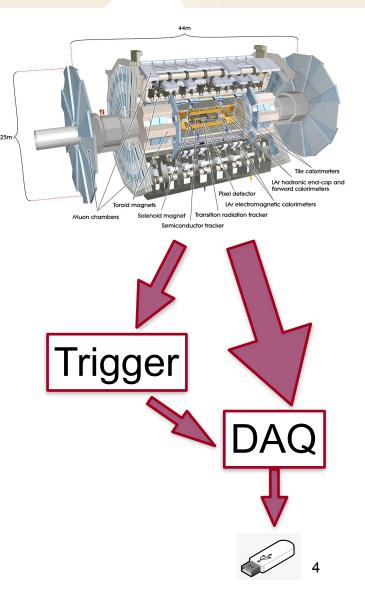
> Mu2e-II Workshop 14. September 2020

LHC Conditions - Reminder

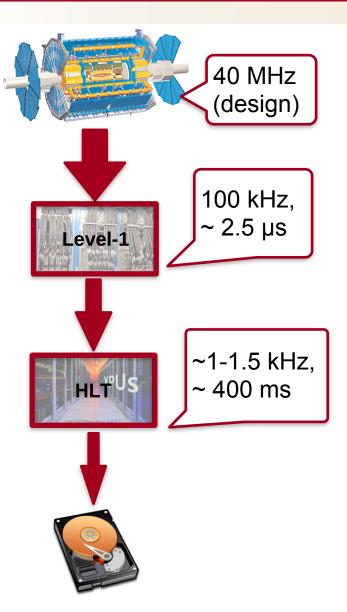


- Crossing of the two proton beams at an interaction point is called *Event*
 - Collisions in 4 points, surrounded by ATLAS, CMS, LHCb, ALICE
 - LHC beams are made up of proton bunches with 10¹¹ protons/bunch
 - Colliding at 13 TeV (6.5 TeV per beam) and ~ 30 MHz in Run 2 (40 MHz if the machine is full with 1 bunch crossing every 25 ns)
 - In 2018: up to 60 proton-proton
 collisions per bunch crossing

Physics at the LHC


- Typical collision at LHC not necessarily what we call "interesting"
 - Need to reject orders of magnitude of soft QCD
- Interesting physics is 6-8 orders of magnitude rarer
 - Electro-weak (W/Z), top physics
 - At 13 TeV and 2e34 cm⁻²s⁻¹ expecting ~ 600 Hz of W(→ leptons)
- LHC was built to explore and search for even more rare physics
 - Higgs produced in about 1 out of 10⁹ collisions with the detection rate being even lower
 - e.g. at 13 TeV and 2e34 cm⁻²s⁻¹ expect ~ 0.01 Hz of ttH production

Saving all events at LHC is not useful (even if we could)!



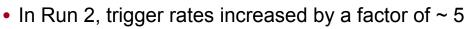
Trigger & Data Acquisition (TDAQ) System

- Recording the interesting physics is a challenge
 - ATLAS detector is BIG
 - ~100 million channels
 - Up to 2.2 MB of RAW data per event (dependent on running and recording conditions)
 - Rate of delivered collisions is high
 - In 2018 ~30 MHz measurement rate
- Data Acquisition (DAQ) is responsible for
 - collecting data from detector systems (detector read-out),
 - digital conversion and
 - recording them to mass storage for offline analysis (data flow)
- Trigger is responsible for real-time (online)
 selection of the subset of events to be recorded

The ATLAS Trigger System

• <u>Level-1 (L1)</u>

- Hardware-based
- Coarse selection based on limited input from calorimeter & muon systems
- Rate and latency limit set by detector & trigger hardware


<u>High-Level Trigger (HLT):</u>

- Software-based
- Average processing time limited by HLT farm size
 - Commodity hardware; ~40k processing applications
- Networking based on commercial technologies (Ethernet)

$Run 1 \rightarrow Run 2 \rightarrow Run 3$

• Evolution of the TDAQ system somewhat dictated by evolution of LHC performance

Peak	√s [TeV]	Peak luminosity [cm ⁻² s ⁻¹]	Peak pile- up
Run 1	8	~ 7 x 10 ³³	~ 35
Run 2	13	~ 2 x 10 ³⁴	~ 60 (~ 80 in 2017)
Run 3	13 - 14	~ 2 x 10 ³⁴ (luminosity levelling)	~ 60

- A factor of ~2 due to the energy increase
- A factor of 2-3 due to the luminosity increase
- Options to cope with the increase in trigger rates:
 - Increase output rate \rightarrow challenge for offline computing
 - Increased trigger thresholds \rightarrow potential loss of interesting physics
 - Increased trigger rejection / identification power → improved hardware/software

SLAC

Luminosity (10³³ cm⁻² s⁻¹)

ATLAS Trigger Operations (Aug. 24, 2012)

5

https://twiki.cern.ch/twiki/bin/view/

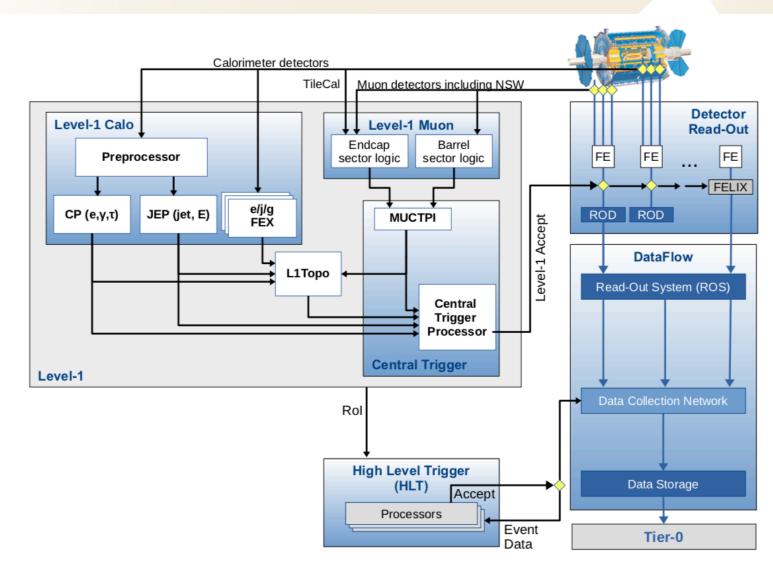
TriggerOperationPublicResults

Rate (kHz) 05

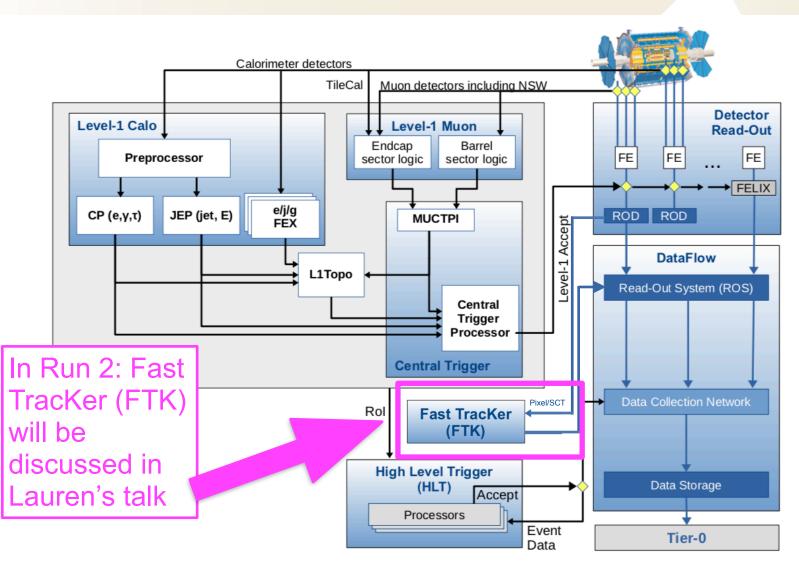
15

10

5

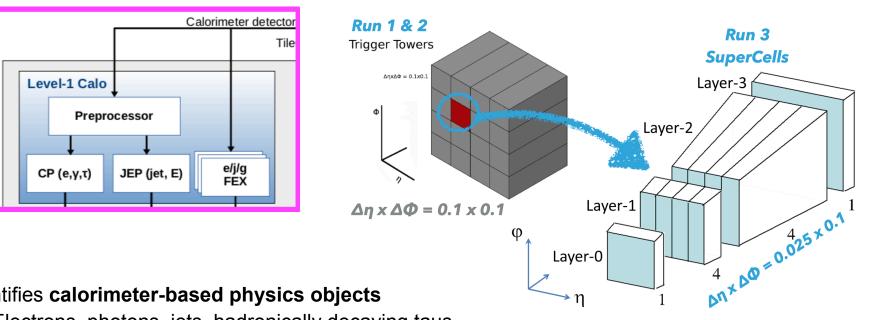

0

EM18VH MU15 TAU40


XE40

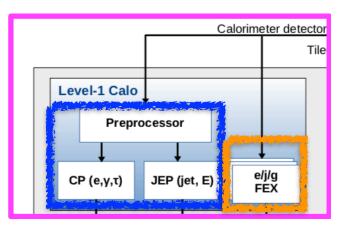
AtlasPublic/


Run-3 ATLAS TDAQ System


ATLAS TDAQ System - with FTK

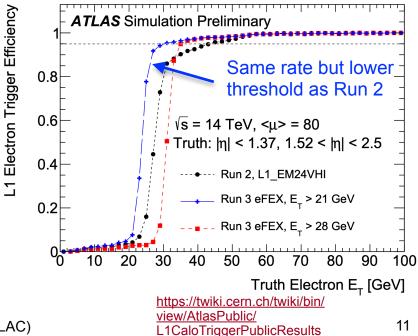
Run-3 ATLAS TDAQ System - Level-1 Calo

Level-1 Calorimeter Trigger

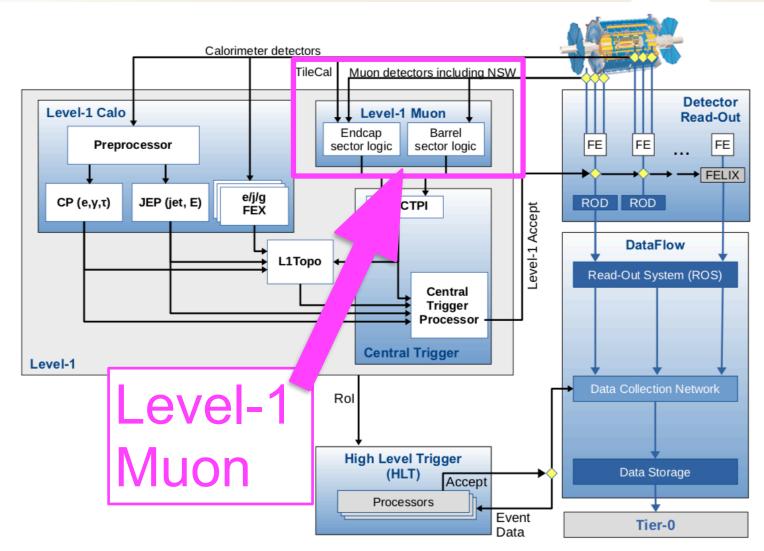

<u>> א</u>

- Identifies calorimeter-based physics objects
 - Electrons, photons, jets, hadronically decaying taus
 - Global event quantities (missing transverse energy -(MET, E_T sums)
- Upgrade for Run 3:
 - Higher granularity LAr calorimeter inputs (SuperCells) provide improved resolution compared to TriggerTowers in Run 1/2

SLAC

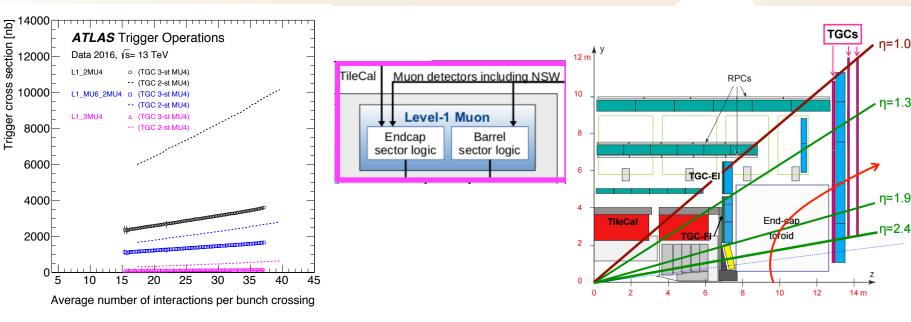

ATL-DAQ-SLIDE-2020-310

Level-1 Calorimeter Trigger

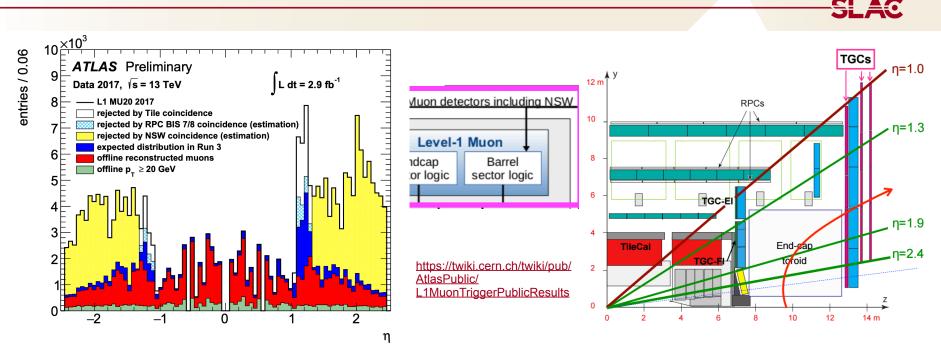


- New ATCA-based Feature EXtractors (FEX)
 - More sophisticated algorithms
 - Improved isolation and pileup robustness
 - Reduced rates while keeping thresholds low
- Run-2 and Run-3 systems will run in parallel during commissioning

- electron FEX (eFEX) to identify isolated electron/photon and tau objects
 - Significant rate savings at L1 with similar efficiency compared to Run-2 performance
- jet FEX (jFEX) to identify jets, MET, E_T sums, hadronically decaying taus
 - Noise suppression and pileup subtraction algorithms to mitigate impact of pileup on ME_T and multi-jet triggers
- global FEX (gFEX) to exploit algorithms for computing global event quantities

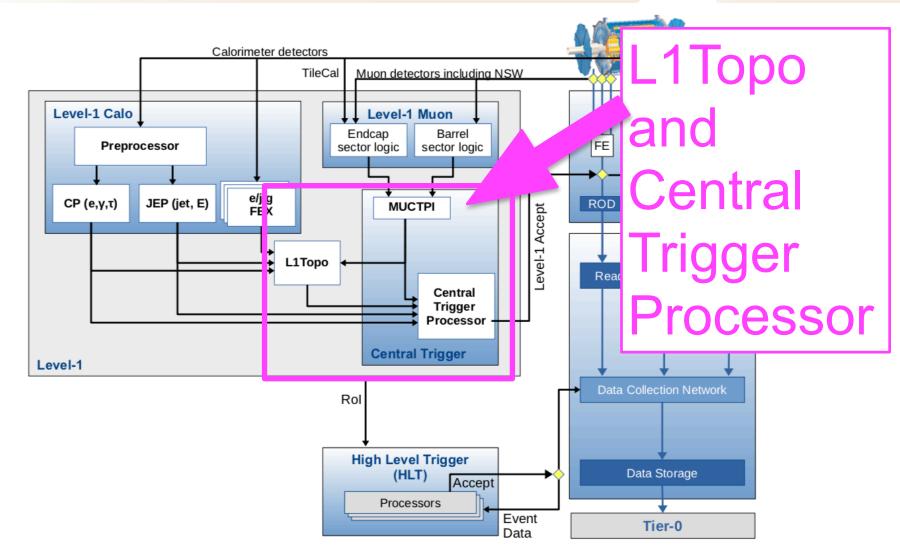

Run-3 ATLAS TDAQ System - Level-1 Muon

https:// twiki.cern.ch/twiki/ bin/view/ AtlasPublic/ TriggerOperationP ublicResults


SLAC

Level-1 Muon Trigger

- Barrel (Resistive Plate Chambers, |η| < 1.05) and Endcaps (Thin Gap Chambers, 1.05 < |η| < 2.4)
- Coincidences to reduce fakes and therefore rate
 - Barrel: Two- (low- p_T) and three-station (hight- p_T) coincidence triggers
 - Coincidence between TGC chambers to reduce fakes (up to 60%) from proton background
 - Additional coincidence with tile calorimeter to reject slow charged particles (typically protons)
- No p_T measurement; Only threshold passed (and multiplicities)
- New in Run 3: New Small Wheel (NSW) (endcap)
 - L1 rate reduction expected already with only one working NSW while maintaining same efficiency


Level-1 Muon Trigger

- Barrel (Resistive Plate Chambers, |η| < 1.05) and Endcaps (Thin Gap Chambers, 1.05 < |η| < 2.4)
- Coincidences to reduce fakes and therefore rate
 - Barrel: Two- (low-p_T) and three-station (hight-p_T) coincidence triggers → rate reduction with only minimal efficiency loss
 - Coincidence between TGC chambers to reduce fakes (up to 60%) from proton background
 - Additional coincidence with tile calorimeter to reject slow charged particles (typically protons)
- No p_T measurement; Only threshold passed (and multiplicities)
- New in Run 3: New Small Wheel (NSW) (endcap)
 - L1 rate reduction expected already with only one working NSW while maintaining same efficiency Catrin Bernius (SLAC) 14

Run-3 ATLAS TDAQ System - L1Topo and CTP

-SLAC

L1Topo and Central Trigger Processor

- L1Topo combines information from L1Calo and MUCTPI (Muon Central Trigger Processor Interface) into variables that are used for L1 selections (topological, angular, kinematic selections, sums of quantities)
 - Significant rate reduction, increased signal purity without impact in physics acceptance

Transverse Mass,

ΔΦ(jet, E_)

- Central Trigger Processor (CTP)
 - Time-alignment of trigger signals taking the inputs from the various L1 sub-systems

Central Trigger

MUCTPI

Central

Trigger

Processor

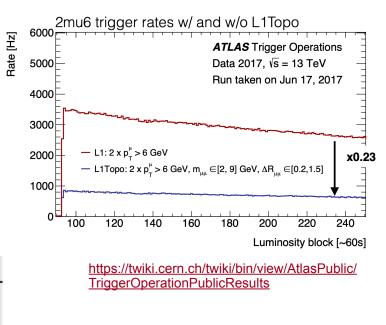
Apply multiplicities, logical selections and topological selections

L1Topo

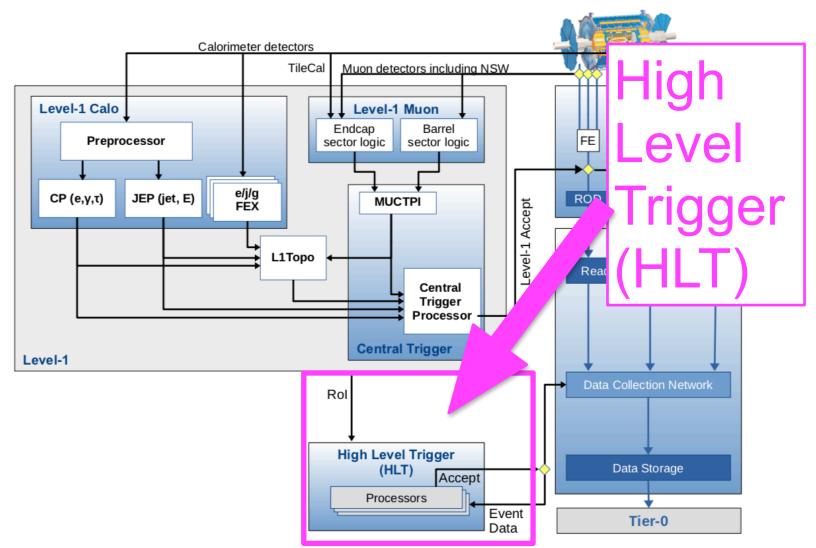
Final trigger decision

H_, M_

Fat jets

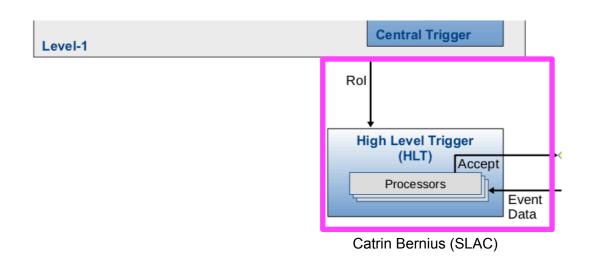

 $\Delta \Phi, \Delta n$

Isolation.


overlap removal.

b-tagging...

Applies prescales and bunch groups


Run-3 ATLAS TDAQ System - High Level Trigger

High-level Trigger

• High-level Trigger (HLT)

- Input from Level-1 is regional information, the Region-of-Interest (Rol)
 - Geometrical region in η x Φ with information about type of object (EM, MU, TAU,...) and thresholds passed (p_T, E_T)
 - Rol is the place where more computationally/time expensive reconstruction algorithms can be run, e.g. tracking (more on <u>this slide</u>)
- Decision about the final event accept is made

SLAO

Reconstruction Algorithms

- To stay within HLT rate & processing time limits, the reconstruction of trigger signatures is made up of several steps to achieve early rejection
 - Early rejection: stop processing of algorithms as soon as a step fails
 - Fast reconstruction
 - Often trigger-specific algorithms
 - Either guided by Region of Interests (Rols) or full detector detector (e.g. jets, MET)
 - e.g. tracking: computationally/readout/network traffic intense to run tracking on complete event, tracking is only run on data from Rols
 - Precision reconstruction
 - (Very similar) algorithms used also in offline reconstruction
 - Full detector information available
- Types of algorithms:
 - Feature Extraction: builds objects (tracks, clusters, ...)

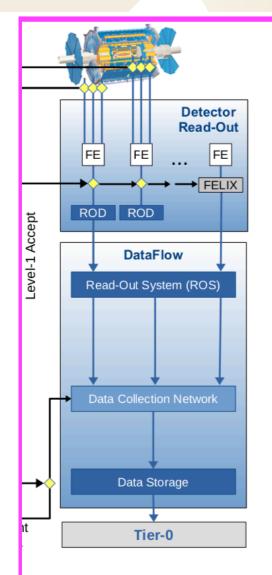
Hypothesis apply selection cuts (track pT, invariant mass, ...)

<u>SLAC</u>

More info can be found in these talks: <u>ATL-DAQ-SLIDE-2019-738</u> <u>ATL-DAQ-SLIDE-2020-336</u>

- ATLAS is redesigning its core framework for native, efficient and userfriendly multi-threading support → AthenaMT
 - Three kinds of parallelism
 - Inter-event: multiple events are processed in parallel
 - Intra-event: multiple algorithms can run in parallel for an event
 - In-algorithm: algorithms can utilize multi-threading and vectorization
- Trigger framework is also being reimplemented for Run 3
 - Will profit from redesign to make more use of offline reconstruction software
 - HLT requirements (partial event reconstruction in Rols and early rejection) have been considered during initial design-phase of the AthenaMT framework
 - Replacing scheduling and change by native Gaudi Scheduler which is also used offline

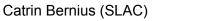
ATL-DAQ-SLIDE-2019-849

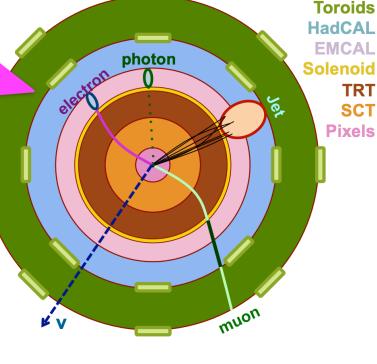

SLAC

Read-Out and Data Flow

- L1 accept causes front-end (FE) detector electronics to transfer relevant data to the Read-Out Drivers (RODs)
 - Detector-specific custom hardwares (mainly VMEbus)
 - Perform initial data processing and formatting
- After ROD stage, data is sent via optical link to

the Read-Out System


- First common stage of the DAQ system
- Data is buffered in custom PCIe I/O card (RobinNP)
- The Data Collection Network handles all I/O on the HLT nodes, including Rol requests from the HLT and full event building over 10 Gb Ethernet network
- Events accepted by the HLT are sent to Data Storage for packaging and transfer to permanent storage offline



What Objects to Trigger on and How

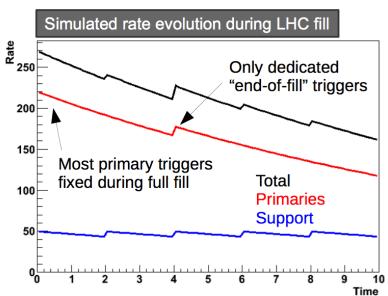
Trigger Menu

- What to record is defined by the physics program of ATLAS
 - Look at what signatures the final state (high-p_T)
 objects of the desired physics leave in the detector
 - Can also look at global event quantities (total energy, missing transverse momentum/energy)
 - Each physics signature can be reconstructed in several steps in form of a *trigger chain / line*
 - *Trigger Menu* is the collection of these trigger chains
 - A typical ATLAS trigger menu is rather complex, contains several hundreds of chains
 - ▶ ~ 500 in Run 1,
 - ~ 1800 2000 in Run 2
 - Trigger Menu varies with luminosity and time (finetuning according to running conditions), and is dependent on rate limitations at trigger levels and online resources (computational needs, bandwidth)

SLAC

Muon Spectrometer

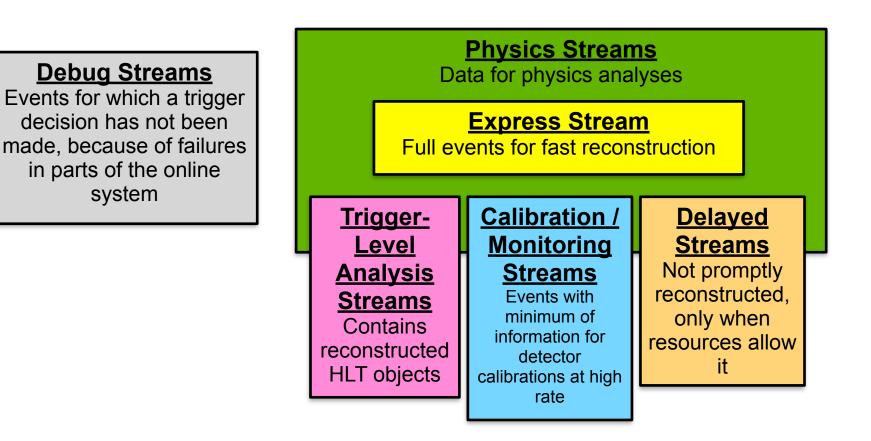
- Trigger menu is documented in <u>ATL-DAQ-PUB-2019-001</u>
 - Highest rates at HLT for single muon/electron, di-tau, MET
 - Same p_T thresholds for electron/muon at HLT
- Also documented dedicated menus for heavy-ion, low μ datasets (μ ~ 2) and other special runs


		Trigger Selection		L1 Peak	HLT Peak
Trigger	Typical offline selection	L1 [GeV]	HLT [GeV]	Rate [kHz]	Rate [Hz]
				$L=2.0\times10^{34} \text{ cm}^{-2} \text{s}^{-1}$	
	Single isolated μ , $p_{\rm T} > 27$ GeV	20	26 (i)	16	218
Single leptons	Single isolated tight $e, p_{\rm T} > 27 {\rm GeV}$	22 (i)	26 (i)	31	195
	Single μ , $p_{\rm T} > 52 {\rm GeV}$	20	50	16	70
	Single $e, p_{\rm T} > 61 \text{ GeV}$	22 (i)	60	28	20
	Single τ , $p_{\rm T}$ > 170 GeV	100	160	1.4	42
	Two μ , each $p_{\rm T} > 15 \text{ GeV}$	2 × 10	2 × 14	2.2	30
	Two μ , $p_{\rm T} > 23, 9 {\rm GeV}$	20	22, 8	16	47

ATL-DAQ-SLIDE-2020-320

Trigger Chains

-SLAC


- Not all trigger chains need to run at full rate
 - Rate might be just too high
 - Often just a subsample is enough
 - Can add triggers when luminosity drops to make optimal use of resources
- *Prescales* are used to reduce rate
 - Prescale of N (e.g. N=10): Only accept 1 out of N events

- Trigger chains are classified into
 - Primary/physics chains: chains for physics signals in general (unprescaled)
 - Backup chains: higher thresholds and/or tighter selections (e.g. in case of unexpected luminosity increase)
 - Supporting & background chains: to collect data for auxiliary measurements in physics analyses (e.g. data-driven background extraction, measuring trigger efficiencies), usually prescaled
 - Alternative triggers: using different selection algorithms
 - Monitoring and calibration chains: to monitor the data quality (e.g. to check the performance of tracking by the inner detectors) & calibration purposes for detectors

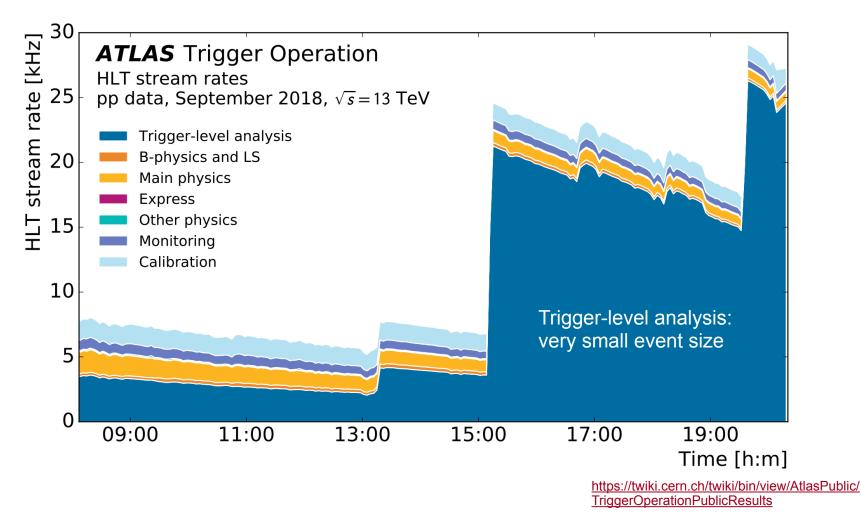
Streaming

- If any trigger chain passes, events are accepted and are written out to streams
- Events can be written out to different streams depending on which trigger was passed

Streaming - Debug Streams

- If any trigger chain passes, events are accepted and are written out to streams
- Events can be written out to different streams depending on which trigger was passed

Debug Streams

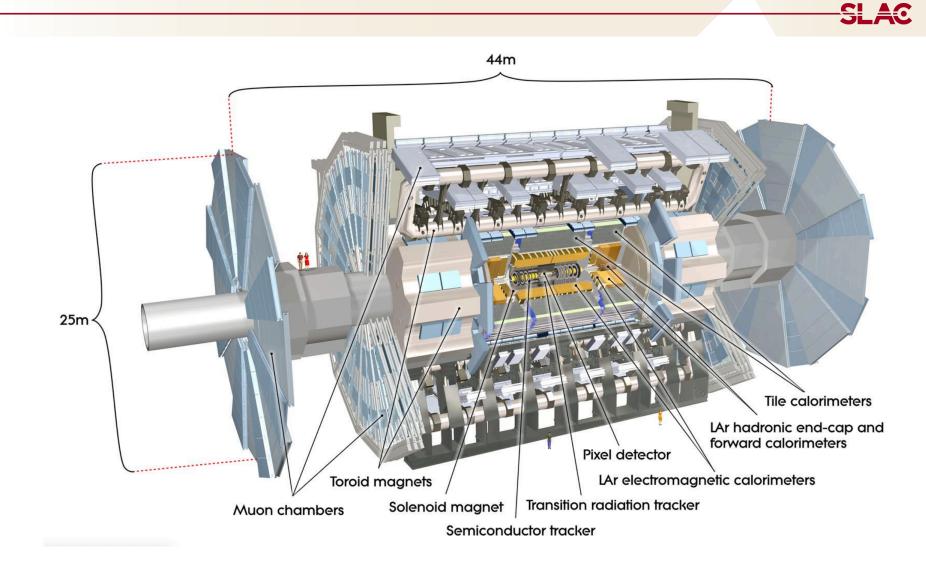

Events for which a trigger decision has not been made, because of failures in parts of the online system

- Decrease in events written to Debug Streams throughout Run-2
- Most events recovered and included in physics analyses
 <u>arXiv:2007.12539</u>

Number of Events Stream 2015 2016 2017 2018 1 694 555 330 5387420813 5649311254 6400342575 Physics **Total Debug** 188 860 411 878 18 197 1507 2.4×10^{-4} 3.5×10^{-5} 3.2×10^{-6} 2×10^{-7} Total Debug w.r.t. Physics **Recovered Events** 402 671 187 944 18 001 1455 Recovered Events w.r.t. Total Debug 97.8% 99.5% 96.5% 98.9%

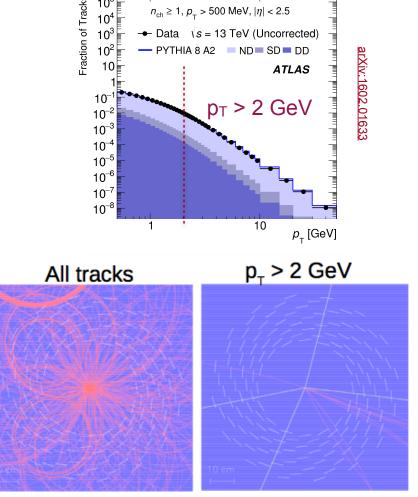
slac

Streaming



- Experience from Run 1 and Run 2 has shown that the ATLAS TDAQ system is able to efficiently record data while dealing with various constraints and challenging conditions
 - Evolution of the TDAQ system in terms of hardware and software important to maintain physics acceptance and efficiency
 - Improvements for Run 3 are focussing on new L1 hardware and improved HLT algorithms
 - Upgraded L1Calo and L1Muon system
 - Moving closer to offline reconstruction through AthenaMT
 - Versatile trigger menu to record data for a wide range of physics analyses
 - Aim at exploiting the total bandwidth for physics even better and to extend the phase space for physics discovery
- Not shown here: Performance of TDAQ system throughout Run 2, please see https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TriggerPublicResults
- For info on the the HL-LHC ATLAS TDAQ system, see <u>ATLAS-TDR-029</u>

The ATLAS Detector



32

Identifying the "Interesting" Events

- Proton collisions produce mainly hadrons with low transverse momentum
 - Only 2% of all tracks have $p_T > 2 \text{ GeV}$

- Interesting physics is usually high-pT
 - $H \rightarrow \gamma \gamma$, $p_T(\gamma) \sim 50-60 \text{ GeV}$
 - W \rightarrow eu, p_T(e) ~ 30-40 GeV
 - Obvious signatures to use in the trigger
 - Single e/µ triggers used in most analyses
- What if new physics is "soft"?
 - This is where triggering becomes a challenge
 - Upgraded and new features in TDAQ system as well as ideas necessary!

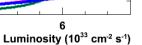
Simulated $H \rightarrow 4\mu + 17$ minbias events

• Options to cope with the increase in trigger rates:

Peak luminosity

[cm⁻²s⁻¹]

~ 7 x 10³³


~ 2 x 10³⁴

~ 2 x 10³⁴

(luminosity levelling)

- Increase output rate \rightarrow challenge for offline computing
- Increased trigger thresholds \rightarrow potential loss of interesting physics
- Increased trigger rejection / identification power \rightarrow **improved** hardware/software

Catrin Bernius (SLAC)

√s

[TeV]

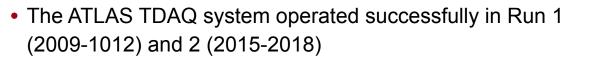
8

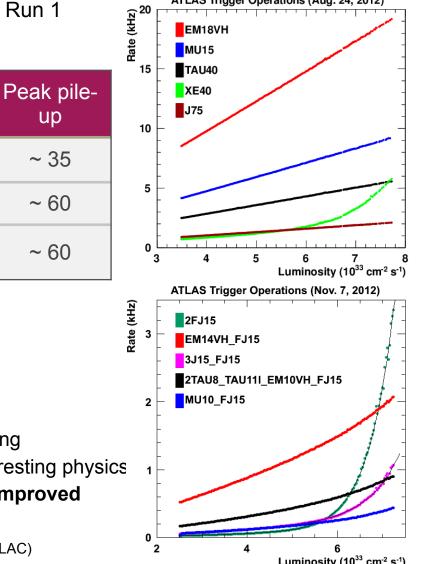
13

13 - 14

In Run 2, trigger rates increased by a factor of ~ 5

- A factor of 2-3 due to the luminosity increase


- A factor of ~2 due to the energy increase


Peak

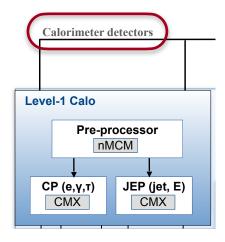
Run 1

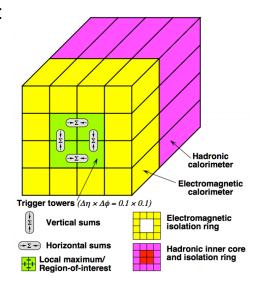
Run 2

Run 3

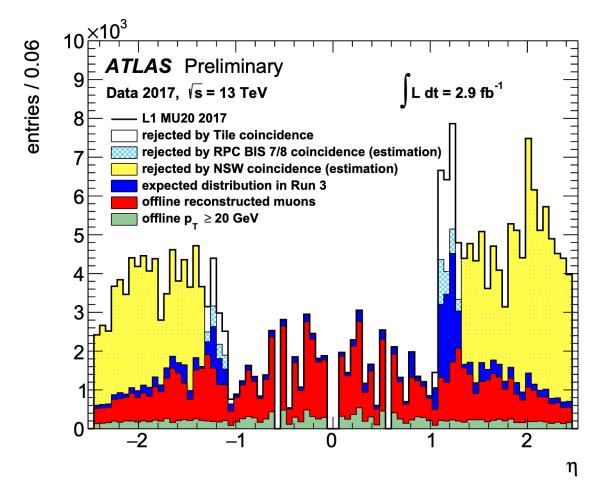
Run 1 \rightarrow Run 2 \rightarrow Run 3

up

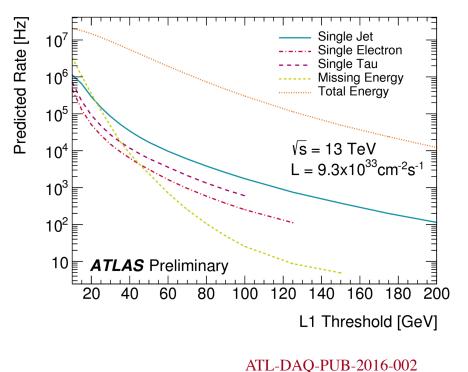

https://twiki.cern.ch/twiki/bin/view/ AtlasPublic/ TriggerOperationPublicResults


ATLAS Trigger Operations (Aug. 24, 2012)

<u>SLAC</u>


L1Calo - Run 2

- For triggering on any EM object
 - Electrons, Photons, Jets, Taus
 - Global event quantities (MET)
- Run 2 Pre-processor
 - Several calorimeter cells are summed into trigger towers
 - Resulting in towers of reduced granularity, e.g. $\eta \propto \Phi = 0.1 \propto 0.1$
 - ~7000 calorimeter trigger towers
- Run 2 Cluster Processor (CP), Jet-Energy Sum Processor (JEP):
 Object reconstruction for e, γ, τ, jet, (E)
 - Find local maximum via sliding window algorithms
 - Apply energy selection based on sum in towers
 - Window size depending on object
 - Electron/Photon 0.2 x 0.2, Jets 0.4 x 0.4
 - Can apply additional selections
 - EM isolation (ring around core)
 - Hadronic isolation (no activity in hadronic layer)


Level-1 Muon

https://twiki.cern.ch/twiki/pub/ AtlasPublic/ L1MuonTriggerPublicResults

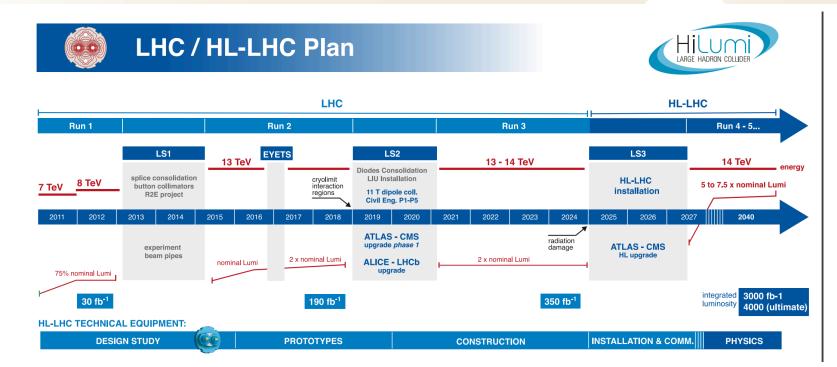
Predicting Trigger Rates and Computing Needs

- Rate and computational needs can be predicted for triggers making use of Enhanced Bias (EB) data
 - EB data: dataset with O(1M) events, enhanced in high-p_T objects, selected using only L1 triggers
 - By knowing the L1 prescales, the selection bias can be removed with event weights
 - This provides an unbiased sample with sufficient statistical precision in the high-p_T/ high-multiplicity regime
- Rate and computational needs predictions are possible through reprocessing a new trigger menu with the enhanced bias dataset

JINST 15 (2020) P04003

37

Trigger Operation


- Many aspects to consider for and during data-taking:
 - Operating & maintaining the trigger system
 - Shifter and expert on-call organization
 - Planning & getting system ready for intensity ramp ups and special runs
 - Commissioning & integration of trigger sub-systems
 - Dealing with day-by-day operational challenges and limitations
 - Rate limitations due to sub-detectors in certain conditions
 - HLT farm performance
 - Debug stream treatment
 - LHC plan changes
 - Testing, validation & deployment of new menus & software
 - Monitoring during data-taking
 - Data Quality assessment

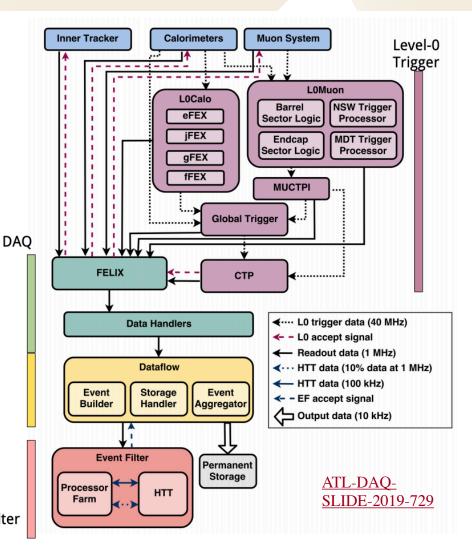
Year Dataset	Detect	Trigger DQ Eff.		ATLAS DQ Eff.	Integrated Luminosity
	Dataset	L1 [%]	HLT [%]	[%]	Integrated Lummosi
2015 pp @ pp @	<i>pp</i> @ 13 TeV (50 ns)	100.00	99.94	88.77	84 pb ⁻¹
	pp @ 13 TeV	99.97	99.76	88.79	3.2 fb^{-1}
2016	pp @ 13 TeV	98.33	100.00	93.07	33 fb ⁻¹
2017	pp @ 13 TeV	99.95	99.96	95.67	44 fb^{-1}
2018	pp @ 13 TeV	99.99	99.99	97.46	59 fb ⁻¹

arXiv:2007.12539

Run 3 and Run 4

- ATLAS Upgrades for Run 3
 - Partial replacement of muon spectrometer, finer LAr segmentation
- ATLAS Upgrades for Run 4
 - New inner tracker with extended η coverage, trigger and calorimeter upgrades, potentially new calorimeter/timing detector in forward region

Phase-II TDAQ system


-SLAC

- Two-Level Trigger and Data Acquisition System
 - hardware-based L0 trigger system
 - software-based Event Filter, aided by dedicated tracking accelerator
- Storage-based data-flow infrastructure
 - decouple real-time domain from software processing
 - enable advanced data processing strategies

Operating points for ATLAS TDAQ:

- L1 latency increase to ~ 10 µs (~2.5 µs today)
- Readout rate increase to 1-4 MHz (100 kHz today)
 Event Filter
- Rate to permanent storage ~ 10 kHz (~1 kHz today)

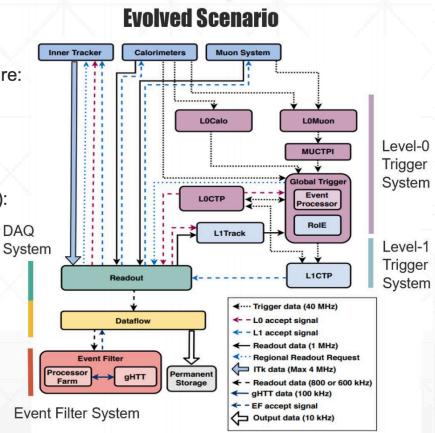
ATL-DAQ-SLIDE-2019-527

SLAC

Phase-II TDAQ upgrade

Three main systems of the TDAQ Phase-II upgrade architecture:

- Level-0 Trigger
- DAQ (Readout and Dataflow subsystems)
- Event Filter

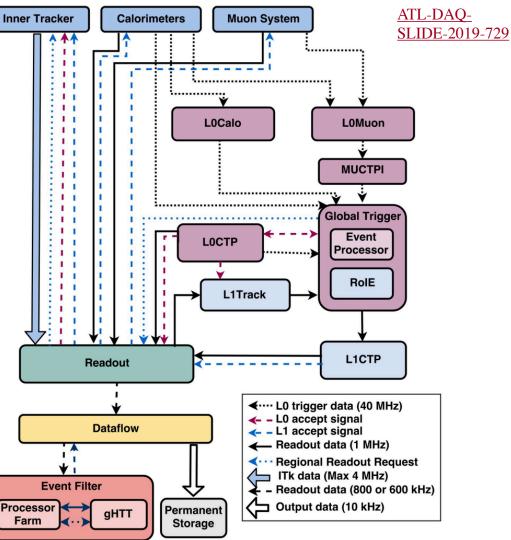

Single-hardware-level trigger architecture (baseline scenario):

 capable of evolving into a two-level hardware trigger system (evolved scenario)

The two main **criteria for** an evolution to the **split-level hardware trigger** configuration:

- the hadronic trigger rates
- the inner pixel detector layer occupancies

If either or both are higher than expected, the baseline TDAQ architecture would restrict the trigger menu at the ultimate HL-LHC running conditions.



ATL-DAQ-SLIDE-2019-527

Phase-II TDAQ system

SLAC

- Evolution path to a two-level hardware trigger included in the design
 - L0 4 MHz
 - L1 1 MHz
 - Event Filter 10 kHz
- Possible transition from baseline to evolution driven by physics requirements
 - hadronic trigger rates
 - occupancy of inner layers of ITk
- Avoid the baseline TDAQ implementation restricting the trigger menu at the ultimate HL-LHC operating conditions
- Level-1 Trigger combines L0 objects with track information from a dedicated subsystem to discriminate against pileup in the calorimeter

Catrin Bernius (SLAC)