Neutrino Physics Frontier NF01: Neutrino Oscillations

Mark Messier (IU) for the NF01 conveners Peter Denton (BNL), Megan Friend (KEK), Hiro Tanaka (SLAC)

Early Career liaisons: Teresa Lackey (IU) Jay Hyun Jo (Yale)

NF01: Neutrino Oscillations

- Probes of the six standard oscillation parameters using available and new sources; natural and artificial.
- Extensions to BSM physics which may impact or be observable through oscillations

$$\begin{array}{c} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{array} \right\rangle = \begin{pmatrix} 1 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{array} \right) \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ 1 \\ -s_{13}e^{i\delta} & c_{13} \end{array} \right) \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 1 \end{array} \right) \begin{vmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{vmatrix} \\ P_{\alpha\beta} = \sin^{2}(2\theta)\sin^{2}\left(1.27\Delta m^{2} \left[eV^{2}\right]\frac{L \left[km\right]}{E \left[GeV\right]}\right) \\ \left|\Delta m_{32}^{2}\right| \equiv \left|m_{3}^{2} - m_{2}^{2}\right| \\ \simeq 2 \times 10^{-3} eV^{2} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\tau} \\ \nu_{\mu} \rightarrow \nu_{e} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{\mu} \\ \nu_{\mu} \rightarrow \nu_{e} \\ \nu_{\mu} \rightarrow \nu_{\mu} + \nu_{\tau} \\ atmospheric and \\ long baseline \\ long baseline \\ long baseline \\ \end{array} \right) \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ -s_{12} \\ -s_{$$

- Questions: Mass ordering, Nature of $v_3 \theta_{23}$ octant, Is CP violated?
- Precision: Is there an underlying order to these parameters? Is there more to this picture?

NF01: Neutrino Oscillations Workshops throughout the fall

- We have planned a series of "mini-workshops" throughout the fall to collect community input. These are 90 minute programs consisting of ~60 minutes of presentations and 30 minutes of Q&A.
- We are organizing these around three approximate time-scales:
 - "Near term" program (<2030) that we expect to carry us through this decade and set the stage for the future program.
 - "Mid term" (2030-2040) which we expect to generate results in the next decade
 - "Long term" (>2040) which we expect to generate results after the next decade.

NF01: Neutrino Oscillations Letters of Intent (as of 9A, 16 Sept. 2020)

- We are tagged as primary group on 16 LOIs
- We are tagged as secondary on another 61 LOIs
- Assignments look good to us. Some bookkeeping:
 - Expected Final Sensitivity of the NOvA Experiment to 3-Flavor Neutrino Oscillations (NF087/088) seems to be duplicated
 - JUNO LOI (NF034) has been assigned to NF04 (natural sources, presumably due to its solar neutrino and geo-neutrinos program). However, perhaps NF01 is a better assignment as primary mission is reactor neutrino measurements?

NF01: Primary LOIs							
Capabilities of the current program	T2K Experiment: future plans and capabilities						
	The NOvA Physics Program through 2025						
	Expected Final Sensitivity of the NOvA Experiment to 3-Flavor Neutrino						
	Development of a joint oscillation analysis by the NOvA and T2K collaborations						
	Neutrino oscillations with IceCube-DeepCore and the IceCube Upgrade						
	BSM Neutrino Oscillation Searches with 1-100 TeV Atmospheric Nu's at IceCube						
Capabilities of future program	The Hyper-Kamiokande Experiment						
	Long-Baseline Physics in DUNE						
	Atmospheric v τ Appearance in the Deep Underground Neutrino Experiment						
	vτ Reconstruction in the Deep Underground Neutrino Experiment						
	Tau Neutrino Physics						
Extensions of / Additions to the future program	Interest to capitalize on the Long Baseline Neutrino Facility (LBNF) investment						
	Long-Baseline Neutrinos at THEIA						
Theory/pheno of neutrino oscillations	Role of higher order maxima of oscillation prob's at long baseline neutrino						
	Direct Probes of the Matter Effect in Neutrino Oscillations						
	Computing Neutrino Oscillations in Matter Efficiently						

Overlap of NF01 with other working groups

	NF02 Steriles	NF03 BSM	NF04 Natural Sources	NF05 Properties	NF06 Cross- sections	NF07 Applications	TF11 Theory	NF09 Artificial Sources	NF10 Detectors
NF01 = p NF## = x	11	12	6	1	5	1	9	10	7
NF01 = x NF## = p	9	5	14	1	8	2	5	4	8
NF01 = x NF## = x	27	38	13	18	20	10	26	18	30

- Some themes of the overlaps:
 - Sterile neutrinos searches / short baseline oscillations
 - Cross-section measurements which support oscillation measurements
 - Studies of oscillations involving tau neutrinos
 - New beam facilities
- Some "gaps" we noticed:
 - No mentions of long baseline physics using beta beams
 - No mentions of long baseline physics using neutrino factories

Possible themes for white papers

- Theory motivation for precision oscillation measurements.
 Possibly joint with TF11
- DUNE "4th module" and other ideas. Possibly joint with NF04, NF10
- Cross-section measurements to support oscillations.
 Possibly joint with NF06
- Roles of near detectors in oscillation experiments.
- Capabilities of new sources. Possibly joint with NF09.

Goal for CMP is to see which of these have traction