NF05 Report: Snowmass and Neutrino Properties

Carlo Giunti, Ben Jones, Lisa Kaufman, and Diana Parno

carlo.giunti@to.infn.it

ljkauf@slac.stanford.edu

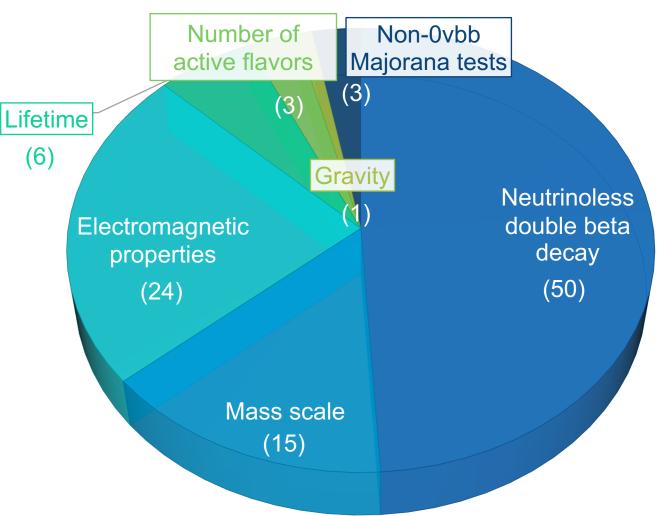
ben.jones@uta.edu

dparno@cmu.edu

Neutrino Frontier Preparation for the Snowmass Community Planning Meeting

September 16, 2020

Summer Mini-Workshops


- We thank the community for strong participation in a series of 8 mini-workshops over the summer of 2020 – between 50-80 attendees each time
- Slides and recordings are available on indico: https://indico.fnal.gov/category/1172/

Date	Subject
8 July	Direct neutrino mass measurements
15 July	Particle theory of neutrinoless double-beta decay
22 July	Nuclear theory of neutrinoless double-beta decay
5 August	Neutrinoless double-beta decay experiment I
12 August	Neutrino electromagnetic properties
19 August	Neutrinoless double-beta decay experiment II

LOI Breakdowns for NF05

We're watching about 85 LOIs (primary and secondary)

- 71 have significant experimental content
- 20 have significant theoretical content
 - (Several have both.)

(This breakdown only includes science-focused LOIs)

Overlaps with other NF Topical Groups

- LOIs with both NF05 and another topical group watching (either primary or secondary)
- Many LOIs are double-counted (or N-counted) here

NF01 Oscillations		NF03 BSM	NF04 Natural Sources		NF07 Applications		NF09 Artificial Sources	NF10 Detectors
22	28	54	31	29	11	33	19	58

Multi-purpose experiments

0νββ detector R&D

Neutrinoless double beta decay

- The next generation of $0\nu\beta\beta$ experiments (ton-scale; probing inverted ordering) is part of the Nuclear Physics Long-Range Plan (and many submitted LOIs!)
- In Snowmass, we're seeing a lot of ideas for the next generation after that –
 facilities that could probe beyond the inverted ordering
 - Detector technologies
 - New readout mechanisms; signal/background rejection; multipurpose facilities
 - Analysis techniques
 - New methods and frameworks for simulation and machine learning
 - Theoretical advances
 - Connections to LHC, oscillation measurements; neutrino self-interactions; leptogenesis

Electromagnetic properties

- Most LOIs are connected to CEvNS cross-section measurements
- Also:
 - Millicharged particles
 - Specific magnetic-moment searches for all three flavors
 - Astrophysical neutrinos

Neutrino mass scale

- Some LOIs relate this to cosmic frontier, and some to $0\nu\beta\beta$ or supernova neutrinos
- Most relevant LOIs are for direct, kinematic probes of neutrino mass scale
 - Tritium, holmium mostly scaling of existing ideas and projects
- Community white paper is already planned, combining theory and experiment.
 See corresponding LOI:

https://www.snowmass21.org/docs/files/summaries/NF/SNOWMASS21-NF5_NF0-198.pdf

Out of scope

- Many important neutrino properties have their home in other topical groups
 - ◆ NF01 (Oscillation):
 - Mixing angles, mass splittings and ordering, and unitarity of PMNS matrix
 - **♦ NF02 (Sterile neutrinos):**
 - Total number of neutrino flavors (active and sterile)
 - ◆ NF03 (BSM); NF6 (Interactions):
 - Exotic neutrino couplings
- We aren't following LOIs on these properties in an official capacity

Future Plans

- Joint sessions at Community Planning Meeting
 - Several planned sessions touch on 0νββ
- Possible additional workshop series (or joint workshops)
- Facilitate white-paper development
 - Let us know if you're interested!