LOIs Relevant to NF07 - Applications

N. Bowden, J. Link, W. Wang Sept 16, 2020

Applications Topical Group

NF07 LOI Statistics

- 41 LOIs tagged or found to be relevant for 'Applications'
 - 11 LOIs with NF07 as Primary Topical Group

• Near universal application focus is nuclear nonproliferation

• Largest overlap with:

- NF02 Sterile Neutrinos 21/41
- NF09 Artificial Neutrino Sources 24/41
- NF10 Neutrino Detectors 28/41

Thematic Groupings - 'CEvNS'

• Efforts developing very low threshold detectors that may be able to detector reactor neutrinos via CEvNS

CF189	CYGNUS: A nuclear recoil observatory with directional sensitivity
CF012	Metastable Water: Breakthrough Technology for Dark Matter & Neutrinos
NF157	Magnetic Microcalorimeters for CEvNS Detection
NF017	Neutrino Physics with Noble Liquid Bubble Chambers
NF095	Future COHERENT physics program at the SNS
NF104	MIVER CEVNS Experiment - A Tool for Discovery of New Physics and Applied Reactor Monitoring
NF067	Far-Future COHERENT physics program at the SNS
NF011	Noble Liquids for the Detection of CEvNS from Artificial Neutrino Sources

Thematic Groupings - 'Far-Field'

 large, underground experiments and R&D efforts - detect reactor neutrinos via IBD at medium-to-long baselines

NF185	Reactor and Geo Neutrinos at SNO+
NF186	Detecting Antineutrinos from Distant Reactors using Pure Water at SNO+
NF099	Neutrino Detection and Ranging
NF096	The deployment of kiloton-scale neutrino detectors at the Advanced Instrumentation Testbed in Boulby England
NF100	Encapsulation of Photosensors in kton–Mton Scale Neutrino Detectors
NF098	A kiloton-scale water-based liquid scintillator detection concept for the Advanced Instrumentation Testbed in Northern England
NF097	A kiloton-scale gadolinium-doped water detection concept for Neutrino Experiment One at the Advanced Instrumentation Testbed in Northern England
NF095	Antineutrino detection at THEIA
NF201	Ocean Bottom Detector

Thematic Groupings - 'Near-Field'

• small, shallow or surface experiments and R&D efforts - detect reactor neutrinos via IBD (mostly) at short baselines

NF179	NuLat: A Compact Anti-Neutrino Detector
NF075	CHANDLER: A Technology for Surface-level Reactor Neutrino Detection
NF168	Forthcoming Science from the PROSPECT-I Data Set
NF169	The Expanded Physics Reach of PROSPECT-II
NF035	The JUNO-TAO Experiment
NF030	LiquidO: a Novel Approach to Detecting Neutrinos
NF118	3D-projection Scintillator Tracker (3DST) in SAND, a DUNE Near Detector Subsystem
NF180	Neutrino Physics and Nuclear Security Motivations for the Continued Development of Organic Scintillators with Pulse Shape DiscriminationCapability and 6 Li-doping
NF149	An Application of Pulse Shape Sensitive Plastic Scintillator - Segmented AntiNeutrino Directional Detector (SANDD)
NF153	Measuring Inelastic Charged- and Neutral-Current Antineutrino-Nucleus Interactions with Reactor Neutrinos
NF108	ORNL Neutrino Sources for Future Experiments
NF184	ROADSTR: a Mobile Antineutrino Detector Platform for enabling Multi-Reactor Spectrum, Oscillation, and Application Measurements

'Reactor Flux and Spectrum'

Improving Reactor Flux and Spectrum knowledge

NF086	Legacy of the Daya Bay Reactor Antineutrino Experiment
NF140	High-Resolution Multiphysics Reactor Modeling for the Antineutrino Source Term
NF117	Prediction and Measurement of the Reactor Neutrino Flux and Spectrum

'Pipeline'

Importance of small experiments for training

CommF48Training a Diverse HEP Workforce in Small Neutrino ExperimentsNF135Neutrino Town Hall Input

'Synergies and Utility'

 Describing the utility case for nonproliferation applications and synergies with HEP topics

NF183	PROSPECT: a Case Study of Neutrino Physics Research providing Enabling Capabilities for Nuclear Security Applications
NF128	Mutual Benefits derived from the Application of Neutrino Physics to Nuclear Energy & Safeguards
NF136	Nu Tools: Exploring Practical Roles for Neutrinos in Nuclear Energy and Security

Thoughts on White Papers

 NF07 topical conveners would like to see white papers (or sections) that further develop the overlaps and synergies between HEP and nonproliferation applications

- Synergies specific to a class of experiment might naturally be coordinated within the relevant thematic group, e.g.:
 - CEvNS
 - Far-Field
 - Near-Field

Future Activities

- Discuss white papers with identified thematic groupings
- Participate in workshop activities of overlapping Topical Groups, eg
 - NF02 (Sterile Neutrinos) in late September
 - NF09 (Artificial Sources) in December session dedicated to reactor flux and spectrum predictions

• Please reach out with any questions or suggestions