DAQ and Slow Control

Nuno Barros

September 16, 2020

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Ionisation laser overview

Ionisation laser

- Steerable mirror (1)
 - Motor drive
 - Encoder
- Rotary stages (3)
- Limit switch
- Alignment target
- Laser box
 - Control & Monitor (LV)
 - Interlock control
 - Attenuator
 - Iris
 - Monitor photodiode
 - Alignment laser
 - Mirror mounts

- Power (HV)
- Cooling

Nuno Barros I Calibration

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Types of data produced in a calibration run

Readout data [O(GB) - O(TB) per run]

- TPC or Photon detector channel readout (either or both)
- Per-event data. The bulk of the "calibration data".
 - Likely need to introduce data reduction techniques (time window selection or others)
- Configuration data [O(MB) per run]
 - Per run data.
 - Identifies which systems are operated and their common settings
 - Additionally, list of positions, directions intended (needs discussion)
 - Not necessarily used in analysis, but important for bookkeeping and operation of DAQ/Cal in sync

- Slow control [O(GB) per run]
 - · Readout of all components of calibration systems
 - Encoders, actuators, switches, diodes, voltages, etc
 - Need to set individual requirements to provide to Slow Control system
 - Readout/sampling frequency
 - Data access from analysis
 - Information important for Monitoring/ Data Quality and possibly data analysis
 - Some data redundant with DAQ storage
- Logging of operation [O(MB) per run]
 - Redundant with slow control
 - Debugging specific to the control operator electronics.
 - Not used in analysis, but important for troubleshooting

Calibration Interface Board (CIB)

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Nuno Barros I Calibration

- Act as interface layer between the DAQ/SC and the calibration systems (as a whole)
 - Receive DAQ commands through the timing system (+ethernet)
 - Translate commands into low level actions in the hardware (or respective interfaces)
 - Drive calibration firing (synchronous with DAQ timing)
 - Receive information from the hardware (sensor data)
- Reduce individual interfaces to SC
- Aggregate low level information
 - E.g.: Combine 3 encoder readouts to obtain beam direction

What will the CIB implement?

- Timing system interface
 - The only connection to the DAQ currently assured
- (in discussion) Data interface to the DAQ
 - Eg.: Get accurate encoder mirror position by checking laser firing time with DAQ
 - CPU + network interface
- (optional) Data interface to monitoring/slow control/database
 - CPU + network interface
- Translate Control commands into low level hardware commands
 - Easily done with an FPGA
 - Alternatively network interface to pass software commands
- Live in the same ground as the calibration hardware
 - Simpler than overly complicated ground isolation over hardware interfaces

The Calibration Interface Board (CIB)

- Based on the trigger (CTB) implemented at Penn for ProtoDUNE-SP
 - Re-use as much as possible of existing design
- Hardware electronics consisting of a motherboard with a system-on-module (SoM) including an FPGA and CPU
 - Motherboard :
 - implements the physical interfaces
 - FPGA performs the fast logic:
 - Timing interface
 - LL control logic of hardware
 - **CPU** performs HL functions:
 - HL communication to operator
 - Output Data stream
 - Monitoring data stream

Current status

- Collecting list of interfaces with IoLaser instrumentation
 - Physical media, number of channels
- Revising design to evaluate changes to be implemented
 - Fiber links (timing, control, data)
 - Timing interface hardware
- Arranging to have a spare shipped to LIP to run prototyping tests
 - Integrated tests with motor driver and encoder
- Software and firmware will be revised as needed to accommodate changes in purpose
 - Different DAQ interface
 - Different firmware logic

Slow Controls

Overview

- Ongoing discussion between CALCI and DAQ consortia to draft interface document
 - Ongoing working document:
 - https://edms.cern.ch/ui/#!master/navigator/document?P:100233199:100646719:subDocs
- Slow Control interface through OPC Unified Architecture (OPC-UA) protocol
 - Physical Interface communication over ethernet
 - Details of the implementation still under discussion

Sources of Slow Control Data

- Laser HV (control, readout) and cooling (readout)
- LV (control, readout)
- Encoders (readout)
- Attenuators(readout)
- Motor driver (readout)
- Laser photodiode (readout)
- Assuming 5 Hz operation of laser system, all readouts should be sampled at about 10 Hz

Implementation design

Power supplies

- Off-the-shelf units.
- Models support direct interface to slow control systems
- Control, monitoring

Remainder of instrumentation (drivers, encoders, laser box)

- CIB will aggregate Slow Control interface to individual parts and implement OPC-UA server that communicates with SC
- Needs to be implemented and tested

DAQ

Overview

- Ongoing discussion between CALCI and DAQ consortia to draft interface document
 - <u>https://edms.cern.ch/ui/#!master/navigator/document?</u>
 <u>P:100233199:100646719:subDocs</u>
 - Several open questions still being discussed to find optimal solution
 - Mostly related on the relation (push-pull) between DAQ and CAL
- 3 possible DAQ interfaces identified
 - Timing
 - Control, configuration and monitoring
 - Data
- Each with both a physical and software aspect

Timing Interface

- ProtoDUNE timing system (PDTS) used to distribute timing, synchronisation and control messages
 - Protocol described in https://edms.cern.ch/document/2209895
- On the IoLaser side, CIB acts as single point timing interface
 - All timestamping operations start here
 - Sync commands and other messages parsed and relayed from here
 - Possibility to provide derived clock in sync with PDTS to component FEs
- Discussions with PDTS group (Bristol) to procure prototype boards for testing

Control, Configuration and Monitoring

- Ethernet socket (over fibre, for ground insulation) will be used to establish links to the DAQ for CCM
- Calibration specific software will be necessary to be implemented on DAQ side
 - DAQ provides the infrastructure
 - CALCI provides the people power for implementation of Cal specific code

- Identification of the parameters and best format implementation of CCM is still ongoing
 - Two pronged approach for configuration:
 - Some parameters configured directly through SC (eg.: HV, LV)
 - Some parameters configured through DAQ (eg.: positions, directions, intensity settings)
- Ongoing discussion within Cal group on specific implementation of the configuration procedure
 - For early commissioning, useful to be able to control IoLaser outside of PD DAQ

Data

The need and implementation of data stream to DAQ is not yet established

Multiple questions to address

- Can the DAQ select calibration data without any input from CAL?
- Do we need data reduction techniques?
 - What input is necessary from CAL to implement them?
- Can precisely timestamped information be accessed for analysis and monitoring from the Slow Controls Database?
 - Use case 1: quality control of requested direction and encoder readouts
 - Use case 2: data reduction on calibration readout
 - Calibration produces a lot of data
 - If beam direction is known in DAQ, can optimise readout windows
- Discussion of the requirements both from CAL and DAQ are still ongoing

Prototyping and testing

- · Ongoing plans to prototype communication with motor driver and encoders at LIP
 - Ongoing discussions between involved parties
 - Borrowing a CTB from UPenn for prototype tests

Local implementation tests

- Testing of communication protocol with FE components (encoders, motor drivers)
 - Both control and feedback
- Measurement of latencies
 - · CIB responsible for timestamping
- (optional,desirable) Test of OPC-UA protocol
 - For posterior testing with ProtoDUNE-SC
- Testing of PDTS interface

Integration Tests

- Initial integration tests in vertical slice tests (dates TBD)
- Planned tests:
 - Power supplies control/monitoring
 - Readout of Cal devices through CIB

Open questions (DAQ)

Model of information flow

- DAQ actively control the calibration or passively receiving information from CAL
- Discussion with DAQ consortium still ongoing
- Depends on other questions
- Can the TriggerPrimitive select Calibration data?
 - Is it necessary to receive position+direction from calibration instrumentation?
- How to act if a laser position/direction fails/is skipped?
 - Multiple solutions available (predefined scan positions, feedback from monitoring,etc)
- Ongoing discussions with DAQ consortium to draft a complete interface document
 - A major goal is to minimize back-and-forth communication between DAQ and Cal

Summary

- Slow Control integration through OPC-UA
 - Power supply control through built-in infrastructure
 - Laser component parts through CIB
 - OPC-UA protocol to be implemented and tested
- DAQ interface discussions ongoing
 - First draft of interface document available
 - Open questions still being discussed to find optimal solution
 - Amount of information needed by DAQ to select calibration data
 - Flow of configuration/control information between DAQ and Cal (push/pull)

Support slides

LABORATÓRIO DE INSTRUMENTAÇÃO E FÍSICA EXPERIMENTAL DE PARTÍCULAS

Laser system information

Time between firing request and firing time

- From the laser documentation, there is a delay of 180 µs when running in (externally) triggered mode
- Additionally there is a **jitter** of **10 ns** (irrelevant for TPC readout purposes)
- Should also account any additional signal propagation between the DAQ and the laser/calibration

Total running time per calibration run

- TDR assumes 800k laser pulses per calibration run (2 runs per year)
 - · Size of readout window dependent on specific laser direction
- Running sequentially (firing one laser at a time), this translated into :
 - 3 live days per scan (~1 week per year)
- Some notes:
 - "reach of the laser" unclear (length of the tracks)
 - · We can in principle fire more than one laser at a time
 - In TDR laser frequency assumed as 10 Hz
 - Can the DAQ handle this?

800,000/scan/10 kt \times 100 μ s \times 1.5Bytes/sample \times 2 MHz \times 384,000 channels = 92 TB/scan/10 kt.

Such a scheme requires precise knowledge of laser direction at firing moment

Nuno Barros I Calibration

IoLaser Operation scenarios (not limited to these)

• Scenario 1: DAQ is aware of directions/positions to be sampled and the initial directions of the mirrors

- · Receives from cal (via IB) when motors start movement
- Calculates TS when required mirrors will be at right place.
- · Sends to Cal the "request" to fire (no SN ongoing)
- Receives the cal "true firing" time (to make sure of the exact direction of the laser)
- · Fetches the correct data from buffer for the relevant APA's
- Restrictions:
 - · What to do if for some reason the laser didn't fire at the exact expected time?
 - Skip the point (and tell DAQ about it)
 - Feedback new direction (how? ethernet?)
 - · How to control that the mirrors are where the DAQ expects them to be at each moment?

· Scenario 2: DAQ is only aware of directions/positions to be sampled

- DAQ receives (from configuration) a list of laser positions/directions
- If cal should be vetoed (SN), send to DAQ command vetoing operation (valid until cancellation command sent)
- · Receives from cal (via IB) when the laser was fired
- · Fetches the data from the buffer corresponding to the direction in the list
- Restrictions:
 - · Assumes that the positions/directions will happen in a specific order

Nuno Barros I Calibration