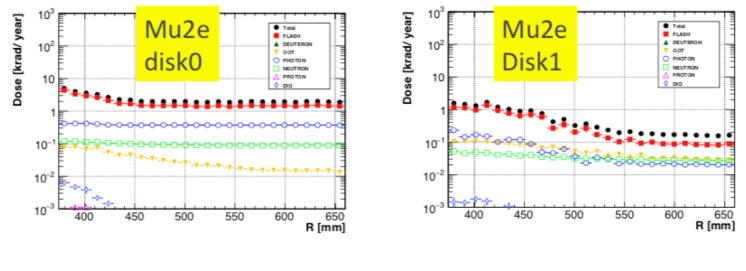


Introduction and overview

Ivano Sarra

Mu2e-II Snowmass21 Calorimeter Workshop

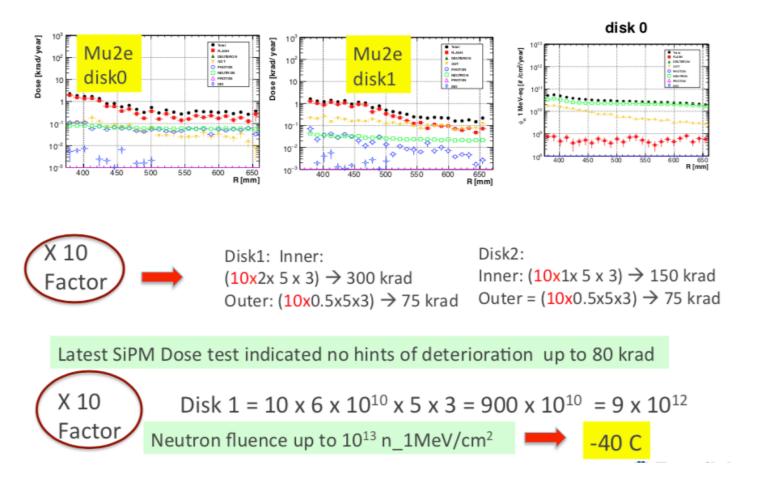
22 September 2020


Why a Calorimeter ?

- Let's summarize the calorimeter scope in Mu2e/Mu2e-II experiment:
- 1. work as an independent trigger for the experiment:
 - a good energy resolution is needed \rightarrow lower than 10% from 50 MeV
- 2. Seed for the tracker reconstruction and provide a good T0
 - good time resolution is needed \rightarrow lower than 500 ps from 50 MeV
- 3. PID
 - Good energy and time resolutions (10% and 500 ps)
- 4. Provide independent (from STM) muon stop normalization- With dedicated LYSO or LaBr crystals

Example of Dose distribution in crystals

From Miscetti's talk at Mu2e-II workshop @ NorthWestern University



Disk1: Inner:(60x 5 x 3 \rightarrow 900 krad Outer:((15x5x3) \rightarrow 180 krad Disk2: Inner: $(10x 5 x 3) \rightarrow 150$ krad Outer: $(5x5x3) \rightarrow 75$ krad

Example of Dose/neutrons distribution in SiPM

From Miscetti's talk at Mu2e-II workshop @ NorthWestern University

R&D considerations ... and infrastructures ..

- List of R&D tests for whatever proposed solution
 - 1. Crystals \rightarrow measure rad-hardness to dose (RIN and TID)
 - 2. Photosensors \rightarrow measure rad-hardness to neutrons up to 10¹³ n_1MeV/cm²
 - 3. Mechanics \rightarrow Control behavior at low temperatures
 - 4. Electronics \rightarrow rad-hardness and speed
- List of engineering details:
 - 1. Qualify MTTF of all components
 - 2. Work on improving Cooling system and cooling distribution
 - 3. Improve/change electronics

Goal and considerations..

- High pileup \rightarrow we need a faster crystal
- High dose \rightarrow we need a rad hard crystal up to 1 Mrad
- High radiation environment and magnetic field \rightarrow we need a rad hard photosensor fast, with high gain and high quantum efficiency
- As we will see, the baseline solution is to use BaF2 crystals + enhanced SiPM
- But I want to close with an exercise / question:
 "can be 7 cm of LYSO + 10 um pixel size SiPM (at -40 C) an alternative solution?" Stefano and I are personally looking also to this option

SPARES

6

