

Rare Earth Doped BaF₂ Crystals

Chen Hu¹, Liyuan Zhang¹, <u>Ren-Yuan Zhu¹</u>, Junfeng Chen², Dong Wang², Jianqiang Liu³, Mingrong Zhang³

¹California Institute of Technology ²Shanghai Institute of Ceramics ³Beijing Glass Research Institute September 22, 2020

Presented in the Mu2e-II Snowmass21 Calorimeter Workshop

Introduction

- Undoped CsI crystal used for the Mu2e calorimeter has a fast scintillation at 310 nm with 30 ns decay time and survives an ionization dose up to 100 krad.
- BaF₂ crystal has a ultrafast scintillation at 220 nm with 0.5 ns decay time and a similar intensity as CsI, and may survive 100 Mrad. Its slow scintillation at 300 nm with 650 ns decay time, however, causes pileup in a high rate environment.
- Two approaches have been used to suppress the slow scintillation in BaF₂: (1) rare earth doping and/or (2) dedicated photodetector. Yttrium doping in BaF₂ crystals is found effective, promising a ultrafast calorimeter.
- Mass production capability of BaF₂ exists in industry:
 - BGRI (China), Incrom (Russia) and SICCAS (China);
 - Hellma (Germany).
- Reported today is the progress in rare earth doped BaF₂ crystals.

Some Fast Inorganic Scintillators

	LSO/LYSO	GSO	YSO	Csl	BaF ₂	CeF ₃	CeBr ₃	LaCl ₃	LaBr ₃	Plastic scintillator (BC 404) ^①
Density (g/cm ³)	7.4	6.71	4.44	4.51	4.89	6.16	5.23	3.86	5.29	1.03
Melting point (°C)	2050	1950	1980	621	1280	1460	722	858	783	70 [#]
Radiation Length (cm)	1.14	1.38	3.11	1.86	2.03	1.7	1.96	2.81	1.88	42.54
Molière Radius (cm)	2.07	2.23	2.93	3.57	3.1	2.41	2.97	3.71	2.85	9.59
Interaction Length (cm)	20.9	22.2	27.9	39.3	30.7	23.2	31.5	37.6	30.4	78.8
Z value	64.8	57.9	33.3	54	51.6	50.8	45.6	47.3	45.6	5.82
dE/dX (MeV/cm)	9.55	8.88	6.56	5.56	6.52	8.42	6.65	5.27	6.9	2.02
Emission Peak ^a (nm)	420	430	420	310	300 220	340 300	371	335	356	408
Refractive Index ^b	1.82	1.85	1.8	1.95	1.5	1.62	1.9	1.9	1.9	1.58
Relative Light Yield ^{a,c}	100	45	76	3.6 1.1	42 4.1	8.6	99	15 49	153	35
Decay Time ^a (ns)	40	73	60	30 6	650 0.5	30	17	570 24	20	1.8
d(LY)/dT ^d (%/°C)	-0.2	-0.4	-0.1	-1.4	-1.9 0.1	~0	-0.1	0.1	0.2	~0

a. Top line: slow component, bottom line: fast component.

b. At the wavelength of the emission maximum.

c. Relative light yield normalized to the light yield of LSO

d. At room temperature (20°C)

#. Softening point

1. http://www.detectors.saint-gobain.com/Plastic-Scintillator.aspx

http://pdg.lbl.gov/2008/AtomicNuclearProperties/HTML_PAGES/216.html

The 0.5 ns scintillation in BaF₂ promises a ultrafast crystal calorimeter to face the challenge of high event rate expected by Mu2e-II

Ultrafast and Slow Light from BaF₂

BaF₂ has a ultrafast scintillation component @ 220 nm with 0.5 ns decay time and an intensity similar to undoped Csl. It has also a factor of 5 larger slow component @ 300 nm with 300 ns decay time.

Slow suppression may be achieved by rare earth (Y, La and Ce) doping, and/or solarblind photo-detectors, e.g. Cs-Te, K-Cs-Te and Rb-Te cathode NIMA 340 (1994) 442-457

Transmittance of BaF₂:La and BaF₂:La/Ce

Absorptions observed in La and La/Ce doped BaF₂ IEEE TNS 66 (2019) 506-518

Yttrium Doped Small BaF₂ Samples

Increased F/S ratio observed in BGRI BaF₂:Y crystals, Proc. SPIE 10392 (2017)

September 22, 2020

SIC BaF₂:Y-2017

SIC BaF₂:Y-2017 32 x 32 x 182 mm³

F: 150 p.e./MeV, F/S: 1.5 F/T LRU: 10%/6%, δ_F:-1.2%/X₀

SIC BaF₂:Y-2019

September 22, 2020

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass21 Calorimeter Workshop

SIC BaF₂:Y-2020

September 22, 2020

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass21 Calorimeter Workshop

SIC BaF₂:Y-2020: Transverse T

A variation of slow emission intensity and more scattering centers starting from 15 cm from the seed

Achievable: $LO_F > 100 \text{ p.e.} / MeV, F/S > 2, 10\% LRU and <math>|\delta_F| < 3\% / X_0$

ID	Dimension (mm³)	EWLT Fast (%)	EWLT Slow (%)	Coupling end	²² Na :	Light Response Uniformity						
					50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)
SIC BaF ₂ :Y- 32×32×182 2017	70.4	70.7	Α	162	253	0.64	157	1.7	138 (10.0%)	230 (5.6%)	0.59 (4.5%)	
	32×32×162	12.1	/9./	В	158	254	0.62	148	1.4	116 (19.1%)	200 (16.4%)	0.57 (3.7%)
SIC BaF ₂ :Y- 30×30×140 2019	70.0	05.0	Α	132	181	0.73	125	2.3	108 (12.8%)	162 (5.7%)	0.66 (7.6%)	
	30×30×140	10.0	00.0	в	152	227	0.67	141	1.6	117 (15.6%)	177 (14.9%)	0.66 (1.5%)
SIC BaF ₂ :Y- 2020	25×25×197	61.1	72.2	Seed	115	183	0.63	110	1.6	88 (17.7%)	136 (20.5%)	0.64 (2.8%)
				Tail	100	141	0.71	98	2.4	83 (10.1%)	128 (5.3%)	0.64 (7.7%)

BGRI BaF₂:Y-2017

BGRI BaF₂:Y-2020

BGRI BaF₂:Y-2020: Transverse T

A variation of slow emission intensity and good optical quality along the crystal length

Summary: BGRI BaF₂:Y Long Crystals

Achievable: $LO_F > 100 \text{ p.e.} / MeV, F/S > 2, 10\% LRU and <math>|\delta_F| < 3\% / X_0$

ID	Dimension (mm ³)	EWLT Fast (%)	EWLT Slow (%)	Coupling end	²² Na 5	Basic Scinti Source @ 1/8 I	Light Response Uniformity					
					50 ns LO (p.e./MeV)	2500 ns LO (p.e./MeV)	LO(50) /LO(2500)	F	F/S	50 ns LO	2500 ns LO	LO(50)/ LO(2500)
BGRI BoE IV	BGRI BaF ₂ :Y- 25×25×100 2017	69.4	77.1	А	155	231	0.67	152	1.9	129 (11.5%)	206 (6.8%)	0.62 (4.8%)
2017				В	160	258	0.62	157	1.5	129 (15.4%)	214 (13.7%)	0.60 (2.1%)
BGRI BoE IV	BGRI BaF ₂ :Y- 25×25×200 2018*	11.1	45.2	Α	133	317	0.42	203	NA	83 (30.6%)	229 (20.4%)	0.35 (9.4%)
2018*				В	133	265	0.52	159	NA	89 (26.4%)	228 (8.7%)	0.38 (17.2%)
BGRI BaF ₂ :Y- 2020	25×25×201	61.1	72.2	Α	135	268	0.50	124	0.9	105 (14.5%)	228 (8.5%)	0.45 (5.8%)
				В	138	270	0.51	126	0.9	106 (17.1%)	221 (14.7%)	0.47 (3.1%)

*CeF₃: Only one component with 30~50 ns decay time is observed, but no ultrafast component September 22, 2020 Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass21 Calorimeter Workshop

y-Ray Induced Damage in Large BaF₂

September 22, 2020

Presented by Ren-Yuan Zhu, Caltech, in the Mu2e-II Snowmass21 Calorimeter Workshop

Proton and Neutron Induced Damage in BaF₂

FIESEIILEU DY REII-TUAII ZIIU, CAILECH, III LIIE IVIUZE-II SHOWIIIASSZI CAIOHIIIELEI IVOIKSHOP

Summary

- BaF₂ crystals provide ultrafast light with 0.5 ns decay time. Yttrium doping increases the F/S ratio while maintaining the ultrafast light intensity. With sub-ns pulse width BaF₂:Y promises a ultrafast calorimeter.
- 20 cm long BaF₂ crystals show ~50% LO loss after 120 Mrad. 5 mm thick BaF₂ plates show less than 20% LO after 1 x 10¹⁵ p/cm² or 3.6 x 10¹⁵ n_{eq}/cm², indicating that BaF₂ of short light path may be used in a severe radiation environment.
- □ Achievable performance of 20 cm long BaF_2 :Y crystals: LO_F >100 p.e./MeV, F/S>2, <10% LRU and $|\delta_F|$ <3%/X₀. R&D will continue to optimize yttrium doping in large size BaF_2 :Y crystals for Mu2e-II.
 - □ SIC plans to reduce scattering centers by refining growth parameters.
 - □ BGRI plans to eliminate residual cerium contamination by purifying raw material.
 - \Box Caltech plans to investigate radiation hardness of BaF₂:Y crystals.

Effort is also needed to develop VUV photodetector, such as solar-blind SiPM, LAPPD or diamond-based photodetectors.

Acknowledgements: DOE HEP Award DE-SC001192