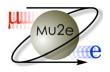

Measurements of doped BaF₂ crystals

Vladimir Baranov, <u>Yuri Davydov</u>, Ilya Vasilyev JINR, Dubna

Mu2e-II Snowmass21 Calorimeter Workshop September 22, 2020



- Crystal samples
- Neutron irradiation facility
- Results
- Conclusion

Crystal samples

We have samples from both SICCAS and BGRI (China):

BaF ₂ pure crystal,	10x10x10 mm
BaF_2 crystal doped with Y (1at.%),	10x10x10 mm
BaF_2 crystal doped with Y (3at.%),	10x10x10 mm
BaF ₂ crystal doped with Y (5at.%),	10x10x10 mm
and	
BaF ₂ pure crystal,	30x30x200 mm
BaF_2 crystal doped with Y (3at.%),	30x30x200 mm

We also expect to receive more samples from Incrom (Russia)

ERA.P

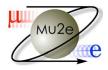
Active core

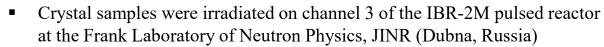
REMUR

REFLEX

REGAT

Power pulses

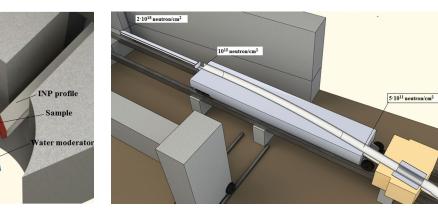

200 ms

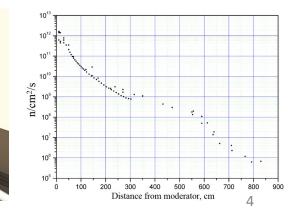

240 us

IZOMER

FSD DN-12

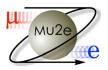
Irradiation facility at IBR-2M

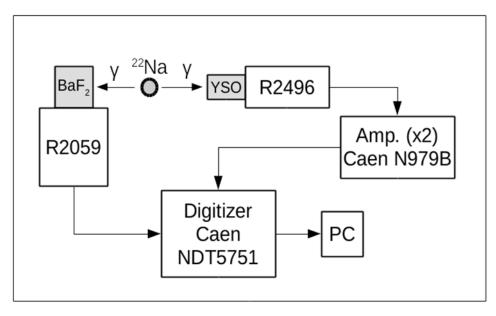


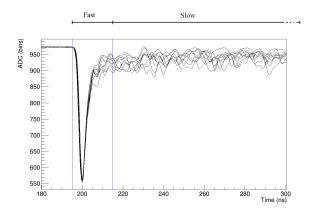


- Typical reactor run continues 12-14 days. The reactor operates with a pulse frequency of 5 or 10 Hz
- Thermal neutron flux density immediately after the water moderator is $\sim 10^{16} \text{ n/cm}^2 \text{ per pulse or } \sim 10^{13} \text{ n/cm}^2 \cdot \text{s on average over time. For 2 weeks of operation, it is possible to obtain a neutron fluence from <math>\sim 10^{11} \text{ n/cm}^2$ on the end of channel #3 up to $\sim 10^{18} \text{ n/cm}^2$ next to the water moderator.

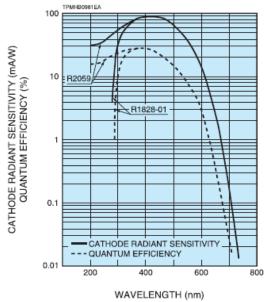
For the first irradiation run, only 4 samples from SICCAS of 10x10x10mm were taken: pure BaF₂, BaF₂:Y(1 at.%), BaF₂:Y(3 at.%) and BaF₂:Y (5 at.%) The samples were placed in channel #3, about 5 m from the water moderator. A nickel wire placed along with the samples was used to measure the neutron fluence.


During the irradiation run, $\sim 2.3 \times 10^{14} \text{ n/cm}^2$ were passed through the samples



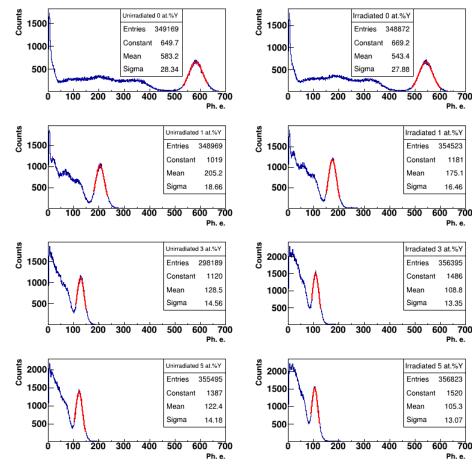


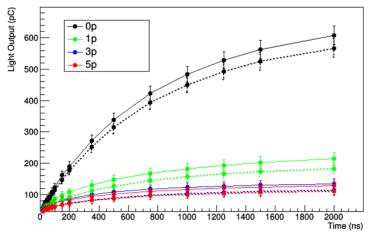
Measurement of samples



- Light outputs were measured by a Hamamatsu R2059 PMT with ²²Na gamma source with a coincidence trigger (E=511 keV)
- Samples were wrapped with Teflon film (2x0.1mm)
- No optical grease was used between samples and PMT
- No light output adjustments have been made due to QE differences for fast and slow components (QE is around 16-17% and 23-24% for fast and slow components, respectively)
- The total signal was integrated within 2 microseconds, while the fast component was taken within first 20 ns and the slow component – after 20 ns

Figure 1: Typical spectral response

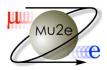




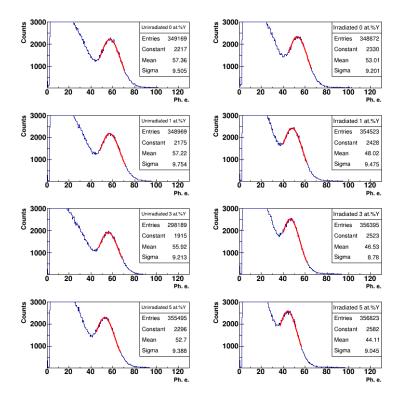
Total signals

Spectra of total signals (2 μ s) from unirradiated (left column) and irradiated (right column) crystal samples (pure and Y doped) due to E=511 keV gammas from a ²²Na source

In unirradiated samples, the total signal drops 2.8 times in the 1at.% doped sample, 4.5 times in the 3at.% doped sample and ~4.8 times in the 5at.% doped sample compared to the pure BaF_2 sample


Irradiation of the crystals resulted in a greater loss of light yield in the yttrium-doped samples

Total LO, ph.e.


700 a.	Y doping	0%	1at.%	3at.%	5at.%
1	Unirradiated	583	205	128.5	122.4
3	Irradiated	543	175	109	105.3
700	LO _{Irr} /LO _{Unirr}	0.93	0.85	0.85	0.86

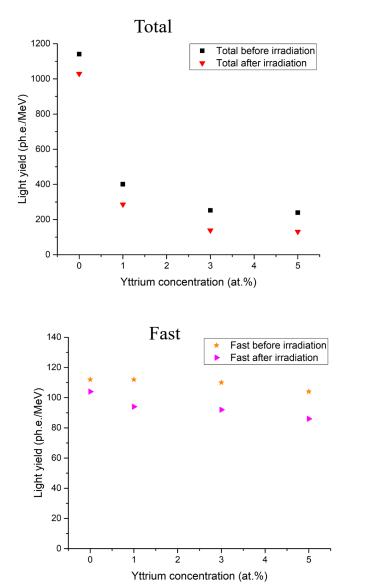
Fast and slow components

Spectra of fast signals (20 ns) from unirradiated (left column) and irradiated (right column) crystal samples (pure and Y doped) due to E=511 keV gammas from a ²²Na source

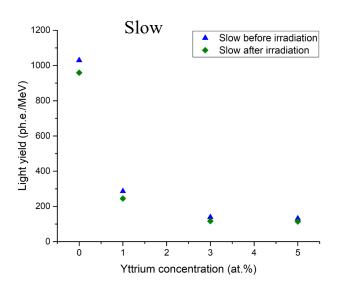
In unirradiated samples, **the slow signal is suppressed** 3.6 times in the 1at.% doped sample, 7.2 times in the 3at.% doped sample and ~7.5 times in the 5at.% doped sample compared to the slow component of a pure BaF_2 sample

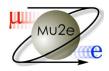
Fast emission LO, ph.e.

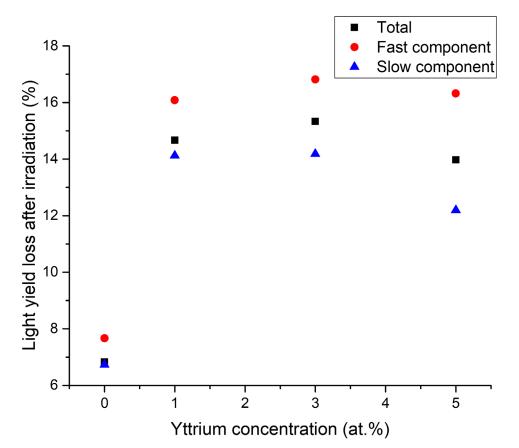
Y doping	0%	1at.%	3at.%	5at.%
Unirradiated	57.4	57.2	55.9	52.7
Irradiated	53.0	48.0	46.5	44.1
LO _{Irr} /LO _{Unirr}	0.923	0.84	0.83	0.84


Slow emission LO, ph.e.

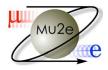
Y doping	0%	1at.%	3at.%	5at.%
Unirradiated	526	146	71	67
Irradiated	490	125	60	58
LO _{Irr} /LO _{Unirr}	0.93	0.856	0.845	0.866


Light yields of all samples


The light yield is shown in ph.e./MeV


It is clearly seen that the irradiated samples doped with yttrium lose the light yield more as compared to the pure BaF_2 crystal

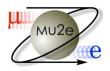
Light output loss after irradiation



The light output loss after neutron irradiation is more than twice as high for yttrium doped samples as compared to the pure BaF_2 sample

Y doping	0% (pure)	1at.%	3at.%	5at.%
Fast	7.6%	16.1%	16.8%	16.3%
Slow	6.8%	14.4	15.5	13.4
Total	6.9%	14.7%	15.3%	14.0%

Conclusion



- □ The light yield losses after neutron irradiation are almost two times higher for the yttrium doped samples compared to the losses in the pure BaF_2 sample
- □ The light yield loss of the fast component after neutron irradiation is higher compared with the slow component on all samples

Obviously, more study is required in a wider range of radiation doses...

Acknowledgments

The authors are grateful to the IBR-2M staff of the Frank Laboratory of Neutron Physics, JINR for their help in irradiating the samples

This work was partially supported by a grant from the Russian Foundation for Basic Research No. 18-52-05021