ND-LAr (ArgonCube) Consortium: Technical Overview

Dan Dwyer Consortium General Meeting 3 Sep. 2020

Requirements and Specifications

• ND-O0: Predict the observed spectrum of neutrino interactions at FD

→ ND-M1: 'The ND must have a LArTPC with reconstruction capabilities comparable/exceeding the far detector'

- → ND-T1.2: ND LArTPC Active Size: Large enough to fully contain relevant signals
- → ND-T1.5.1: Electric Field strength: Match the far detector drift field
- → ND-T1.6.1: Pixel Spacing: Match the far detector spatial resolution

\rightarrow ND-O6: 'Operate in a high-rate environment'

- → ND-T1.6: 3D Pixel Charge Readout: High-accuracy 3D imaging in high-rate env.
- → ND-T1.3.3: Detector Modularity: High-accuracy charge-light signal association
- \rightarrow ND-T1.7.1: Photon detection time resolution: High-accuracy charge-light assoc.

3 m tall x 7 m wide x 5 m in-beam > 250 V/cm (goal: 500 V/cm)

< 4.7 mm

< 3 m³

ND LArTPC Module Design

Modular LArTPC Design

Enables accurate signal reconstruction in high pile-up ND environment

Module size

Each 1m x 1m x 3m module has signals from multiple neutrinos (~5) per 10us beam spill at 1.2 MW.

Pixelated charge readout Provides true 3D imaging of ionization

Low-profile field cage

Maximizes instrumented region Provides optical segmentation

High-performance light readout

Enables accurate charge-light signal matching within each module to overcome pile-up.

High Voltage (131.02.03.02.02)

- One power supply serves a row of 5 modules
- The power supply is connected to the modules by a single low-pass filter
- After the filter 5 resistive cables connect to the HV feedthrough/cathode
- The variations in length of the 5 cables are accounted for by adding a resistor for each cable after the filter
- For safety and to reduce ground loops, cables are bundled together in conduit until they reach their feedthrough
- The jacket of all cables (HV→filter & filter→detector) must share common ground with the filter and detector
- The detector and rack grounding must be permanent dedicated lines, regardless of ground loops

Module Row High Voltage Distribution Schematic

 HV Cable Produced by Dielectric Sciences, INC. Application in nEXO Resistance: 8.4 kΩ/m Capacitance: 90 nE/m 	 HV Filter Low-pass filter with large capacitor & small resistor to prevent voltage drop Additional resistors at outlet sot to match cathodo voltagos 	 HV Supply Provide 60kV and 5 mA Within range of standard power supplies ProtoDUNE recommendation Heinzinger or Eug Elektronik 	 HV Breakdown Monitor current draw In event of, power supply is cut Manual feedthrough replacement
Capacitance: 90 pF/m	set to match cathode voltages	Heinzinger or Fug-Elektronik	replacement

Institutions: Univ. of Bern

6

ND LArTPC: Field Structures (131.02.03.02.03)

Cathode

Field Cage

SLAC, CSU

Key Design Features:

Central cathode, dual anode with 50cm drift regions \rightarrow Short drift reduces required HV and associated risks

Resistive polyamide sheet laminated on G10 panels

- \rightarrow Reduces risks from accidental HV discharge \rightarrow No resistor chain; reduce single-point failure risk
- \rightarrow Low-profile: maximizes active volume

All G10 construction

 \rightarrow Similar density to LAr; reduce signal distortion \rightarrow Compatible thermal contraction at LAr temp

Anode Support Panel

Cryogenic test of resistive sheet (GOhm / square) laminated on G10 panel @ SLAC

Lamination system design

Pixelated Charge Readout (131.02.03.02.04)

Pixelated Anode Design

ND pixel tile design, 10,240 pixels

3D cosmic data from LArPix-v1

Institutions: LBNL, Caltech, CSU, Rutgers, UC-Davis, UC-Irvine, UCSB, UPenn, UTA

Key Design Features:

Pixelated charge readout tiles, ~4mm pitch

- → True 3D imaging; no projective ambiguities
- \rightarrow Overcomes signal pileup at DUNE Near Site
- \rightarrow Mechanically robust, less sensitive to noise pickup
- \rightarrow Scalable design leverages commercial production

LArPix: Custom pixel readout ASIC

→ Provides low-noise, low-power, cryogenic readout
 → SOC: amplification, digitization, triggering, readout
 → Implements highly-scalable control, I/O architecture

LArPix Controller System: Pac-Man

→ Leverages commercial Zynq (CPU+FPGA) system with simple custom interface PCB to control large-scale pixel system, ~1 controller per O(100k) pixel channels

LArPix-v1 ASIC LArPix-v2 ASIC

LArPix-v2 Controller

'Industrialized' Pixel Tile (v2)

Pixel Tile (v2) cable feedthrough

QC Test TPC for Pixel Tiles

Light Readout (131.02.03.02.05)

LCM Modules

Shifts UV light (128 nm) into visible light (510nm)

TPB on fibers shift 128 nm to 425 nm -> wavelength shifting fibers shift 425 nm to 510 nm -> Silicon Photomultipliers (SiPMs) detect 510 nm light

446 mm

- Easy to scale -> fibers have long attenuation
- High detection efficiency, PDE \sim 1-2 %

ArCLight Modules

Shifts UV light (128 nm) into visible light (425nm)

Wavelength shifting plastic (WLS) traps photons that pass through filters -> random photon movement until capture in Silicon Photomultipliers (SiPMs)

446 mm

- **Rigid construction**
- Good spatial resolution

Calibration (131.02.03.02.06)

Charge and Field Calibration

Rock Muons

- Plentiful source in Near Site

Ionization sources:

- Exploring potential, based on FD studies

Institutions: JINR, MSU, UH

Light Calibration

UV pulsers with diffusers

- Light input via optical fiber that is routed to warm feedthrough
- Location TBD based on simulation

ND LArTPC Prototyping / ArgonCube 2x2 Demonstrator

Technology Prototypes (2016-2018)

Near Detector Prototype (2019-2021)

1. SingleCube: Small-scale test of ArgonCube design

- 2. Module 0: First 2x2-scale detector module test
- *3. ArgonCube 2x2 Demonstrator* 4 LArTPC modules, 3-tons active volume

Adapting to COVID-19: SingleCube

COVID-19:

- Delays in production of 2x2 components
- Travel restrictions to 2x2 site @ Bern

Strategy response:

- Minor adjustment of LBNL pixel tile test TPC enables distributed 2x2 prototyping

SingleCube TPC:

- Scaled 2x2 design to smallest 'quanta': 1/16th
- Supports single 2x2 Pixel Tile and Light Module
- Same drift distance as 2x2
- Same materials and fixtures as 2x2

Status:

- Produced all parts commercially during lab/university shutdowns
- Distributed SingleCube TPC kits to partners: Bern, CSU, UTA, SLAC
- Issue: delays in production of multiple charge & light readout systems

→ Enable more "shots-on-goal" for prototyping effort during COVID-19 pandemic

Module

Interior view of SingleCube TPC

ND LArTPC: From Prototyping to Production to Installation

Module Integration Facility @ IERC

- High-bay sufficient for ~4m-tall module assembly \checkmark
- Cryostat(s) capable of hosting ~4m x 1m x 1m module \checkmark
- Crane with ~4m clearance above cryostat for module installation/removal \checkmark
- System for LAr purification, recirculation, and cooling
- **Cleanroom for module assembly**

Specs

 3167 ft² o 12' X 12' Door Size

 \circ O₂ sensors

Vent for ODH purge

Sprinkler system

Temperature = 74°F +/- 2°F

Rel. Humidity = 50% +/- 10%

Electronics Racks (6x)

Summary schedule

Key Dates:

May 2021:

Preliminary Design Review

July 2022:

Final Design Review(s)

~2023:

Production Readiness Reviews

2026:

Completion of LArTPC module production & testing

2029:

Completion of installation & testing

Major Design Concerns

Identify and address any outstanding concerns with the existing design

Goal:

Rapidly address any major design concerns before we progress too far into the preliminary design

Today:

Requesting input from full Consortium. Please review/enter in the shared spreadsheet by next Thursday (Sep. 10): https://docs.google.com/spreadsheets/d/11L_INb8Jsgv6g3gW8x4JVjG3Mgt7q3aMzV4E1kbZpks

In 1 Week:

Discuss with the team of subsystem leads, and propose a plan for addressing each item.

In 4 Weeks:

Report status to the full Consortium.

Summary

- Substantial work for our Consortium to perform, both near-term and long-term
- Many potential roles for new partners
- Activities in need of near-term help:
 - Simulation studies to help inform preliminary design
 - Analysis of prototype data to understand system performance, unexpected issues

Backup

3 Sep. 2020

18

LBNF/DUNE

Organization: ND-LAr (ArgonCube) Consortium

19 3 Sep. 2020 D. Dwyer I Consortium Technical Overview

Interfaces

- DUNE Near Detector Consortia
 - International bodies responsible for delivering detector systems
- ND LArTPC Cryostat
 - Multiple interfaces: Mechanical, electrical, cryo, etc.
 - Cryostat engineer is also Consortium Lead Engineer (A. Lambert)
- LBNF Cryogenics
 - Provides LAr cryogenic system for ND LArTPC
- Near Site Integration
 - Manages interface between Near Detector and NSCF
 - Installation of Near Detector System
 - NSI provides coordination: installation engineer, general technician team
 - ND provides support: scientific labor and technical experts

ND Interface Matrix A. Lambert

