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Introduction
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● Methods to identify quark from gluon initiated jets have a long 
history in HEP

● Most of the current approaches take a small set of observables  
as a proxy for separation

● How to efficiently extract information from particles inside a 
jet?

CMS-PAS-JME-16-003

https://cds.cern.ch/record/2256875?ln=en


ABCNet: Easy as 1-2-3
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● ABCNet: Attention-based cloud network
● Also used for low pT tau reconstruction in 

CMS
● Point clouds: Permutation invariant set of 

objects
● Each particle represents a node in a graph
● Extract local information by combining the 

k-nearest particles 
Initial event

Vertexing + ABCNet

https://link.springer.com/article/10.1140/epjp/s13360-020-00497-3
https://cds.cern.ch/record/002725233


ABCNet: Easy as 1-2-3
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Attention: Let the 
method learn the 
relevant parts for the 
task at hand (like the 
bold text I’m using in 
this presentation)

https://arxiv.org/pdf/1502.03044.pdf


Results: QG separation
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● Signal: Z(𝛎𝛎) + (u,d,s)
● Background: Z(𝛎𝛎) + g
● ak4 jets with 500< pT < 550 GeV 

and |y| < 1.7 
● Consider up to 100 particles
● Use the same samples from 

Energy Flow Networks
● Input variables per particle:

○ Δη
○ Δϕ
○ Log pT
○ Log E
○ Log (pT/pT(jet))
○ Log (E/E(jet))
○ ΔR to jet axis
○ PID
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https://arxiv.org/pdf/1810.05165.pdf


Results: QG separation
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● ParticleNet: Point cloud approach, similar to ABCNet
● Improved background rejection with less training parameters



Detector level?
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● Previous studies done on particle level
● How does the performance changes after detector effects?
● (Very) Preliminary studies on MC QCD events:

○ MadGraph5 + Pythia8 
○ Detector simulation: CMS detector with Geant4
○ Select jets with pT > 200 GeV and |η| < 2.4

● Same input features as before
● Main difference: Instead of gluon vs. quarks inclusively, 

change the problem to a multi-class classification problem
● 4 possible categories:

○ Up
○ Down
○ Strange
○ Gluon

● Train on 700k jets, split equally for each category
● Output: Probability of a jet belonging to a given class



Results: QG separation
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● Compare with CMS and ATLAS results 
● For a rough comparison, take the point of 60% quark efficiency for 

ABCNet
● Gluon efficiency: 0.08 for [200 , 250] GeV and 0.06 for pT > 400 GeV
● Plots not yet public available

P(quark) = P(u) + P(d) + P(s)

https://cds.cern.ch/record/2234117?ln=en
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-009/


Results: strange vs. down
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● Same charge particles with only a few differences
● Recently studied using Jet images. See Yuchiro’s talk
● Differences: 

○ Delphes instead of Geant4
○ Leading hard scattering quark pT > 200 GeV and |η| < 0.05

P’(s) = P(s)/(P(s) + P(d)) 

ABCNet  0.68    0.63      30.0        3.8 

No detector simulation

https://arxiv.org/abs/2003.09517
https://indico.fnal.gov/event/44835/#6-strange-jet-tagging


Results: up vs. down
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● Jet charge used for comparison 
(k=0.5)

● Distribution calculated on the same 
samples used to evaluate ABCNet

P’(u) = P(u)/(P(u) + P(d)) 

AUC 1/εdown for εup = 0.1 1/εdown for εup = 0.5

Jet charge 0.74 52.5 6.0

ABCNet 0.77 103.2 7.0

https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.110.212001


Conclusion
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● Graph neural networks are becoming more common in HEP
● In this presentation, a particular approach treating the data as 

a set of permutation invariant points was shown
● Q/G separation improves compared to different methods
● Expand the concept: separate each light flavour component
● (Very) preliminary results using detector level information are 

promising Accuracy AUC 1/εdown for 
εup = 0.1

1/εdown for εup 
= 0.5

Up vs. strange 0.77 0.85 229 14

Up vs. gluon 0.81 0.89 614 28

Down vs. gluon 0.80 0.88 397 22

Strange vs. gluon 0.80 0.88 452 24
Thanks!



Backup
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Training details
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● Adam optimizer
● Mini-batch size: 64
● Loss: Categorical cross-entropy
● Learning rate: 1e-2, decreasing by a factor of 10 every 10 epochs
● Early stopping: 10 consecutive epochs without improvement



GAPLayer
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● The core component of ABCNet are Graph attention pooling 
layers GAPLayers

● Nodes: xi  
● Edge features: yij  = xi  - xij
● Encode the nodes (and edges) by passing it to a 2 layers NN 

with output size F and 1
● Self-attention: encoded nodes x’i 
● Local-attention: encoded edge y’ij  
● Merge all the coefficients and pass the result to a nonlinear 

function
○ cij   = LeakyRelu(x’i  + y’ij  )

● Align cij  with softmax
○ c’ij  = S(cij)

● Each node xi  receives 1 attention feature:
○ ai  = Relu(∑j c’ij y’ij )

● GAPLayer outputs:
○ Graph features: y’ij 
○ Attention features: ai

https://arxiv.org/abs/1905.08705


Visualizing important particles
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● Identify the particles on each jet containing the largest 
attention coefficients 
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All events 1st 
GAPLayer

2nd 
GAPLayer

Highest 5% Highest 5%

Highest 5% Highest 5%

● Can we look at what 
ABCNet is learning?
○ Look at the 

self-coefficients 
○ Only plot the 5% 

particles inside a jet 
with the highest 
self-coefficients

● Particle importance spams 
a broader region in gluon 
jets compared to quark 
initiated jets



Applications
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● Higgs to invisible limits with ggF
● Large background from W+jets limit the sensitivity of the ggF 

contribution to Higgs->Invisible
● Requiring an ISR jet together with the higgs gives an additional 

handle to separate the 2 components
● In the central region, ISR from ggF is mostly gluon initiated, while in 

W+jets it’s mostly quark initiated

https://arxiv.org/abs/2003.06822


B/C tagging
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● Commonly used with machine learning exploiting secondary 
vertices and displaced tracks

● See more in Javier’s talk

https://indico.fnal.gov/event/45230/#2-tbd

