

Quark-gluon tagging with point clouds

SNOWMASS EF02 Sep 3, 2020 Florencia Canelli
Vinicius M. Mikuni
Eduardo Ploerer

Introduction

WINTERSTONE OF THE STATE OF THE

- Methods to identify quark from gluon initiated jets have a long history in HEP
- Most of the current approaches take a small set of observables as a proxy for separation

How to efficiently extract information from particles inside a

ABCNet: Easy as 1-2-3

- **ABCNet:** Attention-based cloud **net**work
- Also used for low p₊ tau reconstruction in CMS
- Point clouds: Permutation invariant set of objects
- Each particle represents a node in a graph
- Extract local information by combining the k-nearest particles

Vertexing + ABCNet

ABCNet: Easy as 1-2-3

A woman is throwing a frisbee in a park.

A dog is standing on a hardwood floor.

A <u>stop</u> sign is on a road with a mountain in the background.

A little <u>girl</u> sitting on a bed with a teddy bear.

A group of <u>people</u> sitting on a boat in the water.

A giraffe standing in a forest with trees in the background.

Attention: Let the method learn the relevant parts for the task at hand (like the bold text I'm using in this presentation)

Results: QG separation

- Signal: Z(vv) + (u,d,s)
- Background: Z(vv) + g
- ak4 jets with 500< pT < 550 GeV and |y| < 1.7
- Consider up to 100 particles
- Use the same samples from <u>Energy Flow Networks</u>
- Input variables per particle:
 - ο Δη
 - Δφ
 - Log pT
 - Log E
 - Log (pT/pT(jet))
 - Log (E/E(jet))
 - ΔR to jet axis
 - > PID

Results: QG separation

- ParticleNet: Point cloud approach, similar to ABCNet
- Improved background rejection with less training parameters

	Acc	AUC	$1/\epsilon_B~(\epsilon_S=0.5)$	$1/\epsilon_B~(\epsilon_S=0.3)$	Parameters
ResNeXt-50	0.821	0.960	30.9	80.8	1.46M
P-CNN	0.827	0.9002	34.7	91.0	348k
PFN	-	0.9005	34.7 ± 0.4	=	82k
ParticleNet-Lite	0.835	0.9079	37.1	94.5	26k
ParticleNet	0.840	0.9116	39.8 ± 0.2	98.6 ± 1.3	366k
ABCNet	0.840	0.9126	$42.6 {\pm} 0.4$	$118.4{\pm}1.5$	230k

Detector level?

- Previous studies done on particle level
- How does the performance changes after detector effects?
- (Very) Preliminary studies on MC QCD events:
 - MadGraph5 + Pythia8
 - Detector simulation: CMS detector with Geant4
 - Select jets with $p_{\tau} > 200 \text{ GeV}$ and $|\eta| < 2.4$
- Same input features as before
- Main difference: Instead of gluon vs. quarks inclusively, change the problem to a multi-class classification problem
- 4 possible categories:
 - o Up
 - Down
 - Strange
 - Gluon
- Train on 700k jets, split equally for each category
- Output: Probability of a jet belonging to a given class

Results: QG separation

- P(quark) = P(u) + P(d) + P(s)
- Compare with <u>CMS</u> and <u>ATLAS</u> results
- For a rough comparison, take the point of 60% quark efficiency for ABCNet
- Gluon efficiency: 0.08 for [200, 250] GeV and 0.06 for p_⊤ > 400 GeV
- Plots not **yet** public available

Results: strange vs. down P'(s) = P(s)/(P(s) + P(d))

- Same charge particles with only a few differences
- Recently studied using <u>Jet images</u>. See <u>Yuchiro's talk</u>
- Differences:

ABCNet

Delphes instead of Geant4

0.68

○ Leading hard scattering quark $p_T > 200$ GeV and $|\eta| < 0.05$

30.0

3.8

	AUC	ACC	R10	R50
Truth Cut1	$0.65 \ (0.68)$	0.61 (0.62)	31.9 (32.1)	3.6 (3.9)
Truth BDT3	$0.67 \ (0.68)$	$0.62 \ (0.62)$	37.3 (37.1)	3.7(4.0)
$\mathrm{Cut}1$	$0.61\ (0.63)$	$0.57 \ (0.59)$	16.4 (17.9)	2.7(3.0)
Cut1+	$0.62 \ (0.63)$	0.58 (0.60)	17.9 (18.8)	2.9(3.1)
BDT3	$0.61\ (0.63)$	0.59 (0.60)	16.0 (17.1)	2.9(3.1)
BDT4	$0.63 \ (0.63)$	$0.60 \ (0.60)$	22.5 (16.6)	3.2(3.2)
CNN3	$0.62 \ (0.63)$	0.59 (0.60)	17.9 (18.4)	3.0(3.2)
CNN4	0.64 (0.64)	0.60 (0.60)	23.9 (18.8)	3.3 (3.2)

0.63

No detector simulation

Results: up vs. down

$$P'(u) = P(u)/(P(u) + P(d))$$

- <u>Jet charge</u> used for comparison (k=0.5)
- Distribution calculated on the same \mathcal{Q}^i_{κ} samples used to evaluate ABCNet

	AUC	$1/\epsilon_{down}$ for $\epsilon_{up} = 0.1$	$1/\epsilon_{\text{down}}$ for $\epsilon_{\text{up}} = 0.5$
Jet charge	0.74	52.5	6.0
ABCNet	0.77	103.2	7.0

Conclusion

- Graph neural networks are becoming more common in HEP
- In this presentation, a particular approach treating the data as a set of permutation invariant points was shown
- Q/G separation improves compared to different methods
- Expand the concept: separate each light flavour component
- (Very) preliminary results using **detector level information** are

promising

	Accuracy	AUC	$1/\epsilon_{\text{down}}$ for $\epsilon_{\text{up}} = 0.1$	$1/\epsilon_{\text{down}}$ for ϵ_{up} = 0.5
Up vs. strange	0.77	0.85	229	14
Up vs. gluon	0.81	0.89	614	28
Down vs. gluon	0.80	0.88	397	22
Strange vs. gluon	0.80	0.88	452	24

Backup

Training details

Adam optimizer

Mini-batch size: 64

Loss: Categorical cross-entropy

• Learning rate: 1e-2, decreasing by a factor of 10 every 10 epochs

• **Early stopping**: 10 consecutive epochs without improvement

GAPLayer

WIND TO THE PROPERTY OF THE PR

- The core component of ABCNet are Graph attention pooling layers <u>GAPLayers</u>
- Nodes: x,
- Edge features: $y_{ii} = x_i x_{ii}$
- Encode the nodes (and edges) by passing it to a 2 layers NN with output size F and 1
- Self-attention: encoded nodes x'
- Local-attention: encoded edge yⁱ;
- Merge all the coefficients and pass the result to a nonlinear function

$$\circ \quad \mathbf{c_{ii}} = \text{LeakyRelu}(\mathbf{x'_i} + \mathbf{y'_{ii}})$$

- Align c_{ii} with softmax
 - $\circ \quad \mathbf{c''_{ii}} = \mathbf{S}(\mathbf{c_{ii}})$
- Each node x, receives 1 attention feature:

- GAPLayer outputs:
 - Graph features: y';
 - Attention features: a_i

Visualizing important particles

 Identify the particles on each jet containing the largest attention coefficients

- Can we look at what ABCNet is learning?
 - Look at the self-coefficients
 - Only plot the 5%
 particles inside a jet
 with the highest
 self-coefficients
- Particle importance spams a broader region in gluon jets compared to quark initiated jets

Applications

- Higgs to invisible limits with ggF
- Large background from W+jets limit the sensitivity of the ggF contribution to Higgs->Invisible
- Requiring an ISR jet together with the higgs gives an additional handle to separate the 2 components
- In the central region, ISR from ggF is mostly gluon initiated, while in W+jets it's mostly quark initiated

FIG. 1. Leading diagrams (bold) of the (multi) Higgs productions from gluon fusion (ggHⁿ+jets), against the corresponding irr. (multi) EWVB backgrounds (Vⁿ+jets) with additional ISR(s) for 3 parton initial states $(gq,gg,q\bar{q})$.

B/C tagging

- Commonly used with machine learning exploiting secondary vertices and displaced tracks
- See more in <u>Javier's talk</u>

