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Abstract

I will analyze transverse instabilities in the frequency domain due to both broad and narrow band

impedances that are in Booster at injection. I will ignore the instabilities from synchro-betatron

and TMCI because they are irrelevant for Booster at injection. Ng [1, 2] has already done a lot of

the necessary theoretical analysis which I will just regurgitate albeit with my modifications in this

note. My conclusion is that the dampers will need a bandwidth of at least 150 MHz to damp out

both the head-tail and the coupled bunch modes.
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I. INTRODUCTION

For Booster, the more important instability that I need to consider are the head-tail

modes from short range wakes because of the experimental observations published in Ref. [3].

The source of these short range wakes are from the laminations of the gradient magnets.

Since the wakes are short range, this implies that they have a broad band impedance. This

impedance allows for the coupling between longitudinal motion to the transverse motion so

that the transverse motion at the head of the bunch can be out of phase w.r.t. the tail of

the bunch. In fact, there are two mechanisms that gives rise to this coupling. They are:

1. A transverse wake force F⊥ that appears as a longitudinal retarding force via ∂F⊥/∂z,

i.e the slope of the wake force along the bunch. See eq. 6.162 of Chao[4]. F⊥ arises

from the wakefield due to a transverse impedance, Z⊥.

2. Chromaticity, ξ, that couples longitudinal to transverse because of the beam’s non-

zero momentum spread dp/p. This implies that synchrotron motion is involved for

interchanging the particles between the head and tail of a bunch.

The coupling between the longitudinal and the transverse results in the appearance of the

synchrotron frequency in the bunch spectrum. I will discuss head-tail modes in section II

below.

Narrow band impedances can cause coupled bunch modes that include head-tail modes.

Experimentally, this type of instability is also observed in Booster. The source of this insta-

bility are from the unlaminated regions in the Booster straights because from the analysis

by Ng (pg. 430), laminations are not responsible for coupled bunch mode instabilities. I will

examine this instability in section III.

There are two other transverse instabilities: they are transverse synchro-betatron insta-

bilty in Booster which comes from the non-zero horizontal dispersion at the RF cavities

which I will ignore. And there’s also TMCI (transverse mode coupling instability which

cannot be stabilized with chromaticity) that I will ignore as well.

The references I will use for the theory are Chao[4], Ng[1], and Myers[5]. And for the

analysis of Booster instabilities, I will basically regurgitate a lot of Ng[1, 2] but with my

modifications.

2



II. HEAD-TAIL MODES ONLY (BROAD BAND IMPEDANCES)

From Booster experiments done by Alexahin et al [3], the head-tail instability is in the

horizontal plane. This is actually unexpected because näıvely, I would’ve expected the

dominant instability to be in the vertical plane because the beam is much closer to the

laminations in this plane than in the other. It turns out that the reason that the instability

is in the horizontal plane is because the horzontal beta functions are, on average, 4× larger

[6] than the vertical beta functions in the F magnets. See Ref. [7].

I will consider the case where I have broad band impedances that only cause head-tail

instabilites here. IMPORTANT: in general, a broad band impedance cannot drive bunched

beam to instability (see pg. 379 of Ng). However, in the presence of non-zero chromaticity, as

I will see below, there can be head-tail instabilities. (Ng chapter 12). Note: if the intensity

is high enough, it leads to frequency shifts that are comparable to ωs which causes azimuthal

mode coupling. This can lead to mode coupling instability. See Chao section 6.5, pg 323.

The growth rate, 1/τm, of the head-tail modes[8] m = 0, 1, 2, . . ., is given by (eq. 12.13

of Ng which is for Sacherer’s sinusoidal modes approximation for the longitudinal distribu-

tion. Different approximations give different form factors. See pg. 372 etc. for Chebyschev,

Legendre and Hermite modes)

1

τm
= − 1

m+ 1

qeIb
4πβE0

∫ ∞

0

dω Re[β⊥Z
⊥
1 (ω)][hm(ω − ωξ)− hm(ω + ωξ)] (1)

where qe is the electronic charge, Ib = qeNb/T0 is the average current per bunch, Nb is the

number of protons in a bunch, T0 is the revolution period, β is the relativistic beta, E0 is

the total energy of the beam, [β⊥Z
⊥
1 ] =

∑
ℓ(β⊥Z

⊥
1 )ℓ, ℓ is an element in the ring and (β⊥Z

⊥
1 )ℓ

is the product of the beta function β⊥ and the transverse impedance Z⊥
1 at element ℓ (see

pg. 361 of Ng) and ωξ = ξω0/η is the betatron frequency shift due to chromaticity, ξ and slip

factor η. Note: I am using the US definition of the slip factor, i.e. η < 0 below transition

and η > 0 above transition. Note: It looks as if the argument of hm is independent of ωs. It

disappeared because the sum of the line spectrum was replaced by a continuous spectrum.

See pg. 478 of Ng.

And hm is proportional to the power spectrum of mode m and is given by (eq. 9.101 of
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Ng)

hm(ω) =
4(m+ 1)2

π2

1 + (−1)m cos πy

[y2 − (m+ 1)2]2
(2)

where y = ωτL/π. Note: the above comes from the approximation that the distribution

on the time axis is sinusoidal like, i.e. Sacherer’s sinusoidal modes (see pg. 384 of Ng). See

Fig. 1.

In particular, the dipole head-tail mode is when m = 1. See Fig. 2.

Note: m ∈ {0,±1,±2, . . . ,±∞}. See, for example, eq. 6.183 of Chao. But Eq. 1 does

not make sense if m < 0. So I will assume that it is actually |m| on the rhs for now.

As can be seen in Eq. 1, there is no instability when ξ = 0. However, Booster cannot

operate at ξ = 0 because, the m = 0 coupled bunch mode becomes unstable in the presence

of a narrow impedance like resistive wall. See next section.

Rather than running at ξ = 0, which I think is probably not easily maintained, the

stabilizing solution is to run with ξ slightly negative. See section II B and my plots in Fig. 6.

The results in that section shows that the strongest unstable modes are the rigid and dipole

head-tail modes which technically can be controlled with a small negative chromaticity.

However, instead of running with a small negative chromaticity at injection, we actually

run with rather large negative chromaticities, about −20 units in the horizontal and −10

units in the vertical which are required to stabilize the coupled bunch mode instability. See

section III.

-200 -100 0 100 200

0.0

0.2

0.4

0.6

0.8

Revolution harmonic number (f/frev)

h
(ω

)
(d
im
en
si
on
le
ss
)

Power spectrum of modes m for ξ = 0

R
F
fr
eq
ue
nc
y

-
R
F
fr
eq
ue
nc
y

2×
R
F
fr
eq
ue
nc
y

-
2×
R
F
fr
eq
ue
nc
y

m = 0

m = 1

m = 2

m = 3

m = 4

-200 -100 0 100 200

0.0

0.2

0.4

0.6

0.8

Revolution harmonic number (f/frev)

h
(ω

)
(d
im
en
si
on
le
ss
)

Power spectrum of modes m for ξ = -20

R
F
fr
eq
ue
nc
y

-
R
F
fr
eq
ue
nc
y

2×
R
F
fr
eq
ue
nc
y

-
2×
R
F
fr
eq
ue
nc
y

m = 0

m = 1

m = 2

m = 3

m = 4

FIG. 1. The envelope of the power spectrum of the modes that were shown in the time domain

in Fig. 2. The spectrum shifts depending on the chromaticity. These graphs are plotted with

Booster injection parameters, i.e. below transition. Note: I’ve indicated where the RF frequencies

are because the revolution harmonics are too close to be plotted individually here.
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FIG. 2. Head-tail modes using the Sacherer sinusoidal modes model with Booster parameters

as seen by a transverse pickup in the time domain. The betatron tune is Q = 6.8333 in this

calculation.

A. Laminations

A lot of the theoretical work on Booster head-tail instabilities from the laminated magnets

and the lamination-free regions has already been done by Ng[2] and Ng chapter 10.3.1 of

Ref. [1]. More detailed simulations with Synergia was done by Macridin et al [7, 9]. I

will use Ref. [9] which is basically a summary of Ng’s work because it is easier to quote the

formulas using this reference.

The formulæ for calculating the longitudinal impedance per unit longitudinal length Z||/L

(units: Ω/m), and horizontal impedance per unit longitudinal length, Zx/L (units: Ω/m2),

and vertical transverse impedance per unit longitudinal length, Zy/L (units: Ω/m2) of the

laminations with the dimensions shown in Fig. 3 are (eq. 6, 7 and 8 of Macridin[9]. Notice
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FIG. 3. This is the cross sectional view of a parallel faced beam pipe made up of laminations

(labelled “1”) and “cracks” (labelled “2”). The laminations are shorted by an ideal conductor.

that I’ve changed the symbology of the lhs of these equations [10].)

Z||(ω)

L
=

R(ω)

2πb
(3)

Zx(ω)

L
=

R(ω)

2πk(ω)

∫ ∞

0

dη
η2 sech2 ηb

1− iR(ω)
Z0

η
k(ω)

tanh ηb
(4)

Zy(ω)

L
=

R(ω)

2πk(ω)

∫ ∞

0

dη
η2 csch2 ηb

1− iR(ω)
Z0

η
k(ω)

coth ηb
(5)

where Z0 = 377 Ω is the impedance of free space, k(ω) = ω/βc with beam velocity βc and

R(ω) =
Rc(ω) +Rℓ(ω)

h+ τ
≈ Rc(ω)h

h+ τ
(6)

where Rℓ(ω) = (1 + i)/(δ2(ω)σ2) (units: Ω) is the surface resistance of the lamination and

Rc(ω) is the surface resistance of the “crack” between laminations given by

Rc(ω) = i
q(ω)Z0

ωϵ1
tan [q(ω)(d− b)] (7)
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with

q(ω) = k1(ω)

√
1 +

µ2δ2(ω)

µ1h
(1− i) tanh

(
g2(ω)τ

2

)
δ2(ω) =

√
2

ωµ2σ2

g2(ω) ≈
1 + i

δ2(ω)

k1(ω) =
ω
√
ϵ1rµ1r

c


(8)

1. F and D magnet impedances

The parameters that I have used for calculating the impedances of the F and D magnets

are shown in Table I. The plots of the Z||/L and Zx,y/L for both these laminated magnets are

shown in Figures 4 and 5. The Z||/L plot is just for my amusement because it is irrelevant

for what I want to do here.

TABLE I. Parameters used for F and D magnets

Parameter Description Value Units

d dist. from outer wall to centreline 15.24× 10−2 m

h size of “crack” 9.52× 10−6 m

τ thickness of lamination 6.35× 10−4 m

bF aperture radius of F magnet 2.1× 10−2 m

bD aperture radius of D magnet 2.9× 10−2 m

ϵ1r relative permittivity of “crack” epoxy 4.75

µ1r relative permeability of “crack” epoxy 1

ϵ2r relative permittivity of lamination 1

µ2r relative permeability of lamination 100

σ2 conductivity of lamination (assumed to be iron) 0.5× 107 Ω−1m−1

I’m only interested in the transverse impedances shown in Fig. 5 for transverse head-tail.

And, in fact, only the real part which directly affects the growth/damping of that mode.

The imaginary part is only relevant if I want to calculate the frequency shift of that mode.

Note that the peak of the real part of the impedances are between 55 – 60 MHz.
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FIG. 4. The longitudinal impedance of the F and D magnets. I will not be considering these

impedances because I’m working with the transverse. The F magnet plot should be compared to

Macridin[9] fig. 2. I believe Macridin made a mistake in his plot because he used k = ω/c rather

than k = ω/βc.

B. Head-tail growth rates

Now, I can calculate the growth rates for different modes at 400 MeV injection using

Eq. 1. Table II shows the parameters used for the following calculations and Table III shows

the derived quantities required for equations 1 and 2.

But first, let me calculate β⊥Z
⊥
1 . I will work with the horizontal plane here because the

result becomes the vertical by replacing x with y. So, in the horizontal plane, I have

β⊥Z
⊥
1 =

∑
ℓ

(
βx

Zx

L

)
ℓ

Lg (9)

where I have to sum over all the gradient magnets. I have to multiply by the length of the

F, D magnets, Lg, because Zx/L is the the impedance per unit length. Note: this means

that Z⊥
1 = (Zx/L)Lg has units of Ω/m. Chao on pg. 69 says that Z⊥

1 has dimensions of

Ω/m as well. So everything is consistent.

When I expand the sum, I get

β⊥Z
⊥
1 = LgNg

[
βFx

(
Zx

L

)
F

+ βDx

(
Zx

L

)
D

]
(10)

because there are Ng F and Ng D magnets and I have made the approximation that βFx is

the same for all the F magnets and similarly for the D magnets.

So, with Eq. 10 and the values in Tables II and III, I can create the growth rate (rate of

growing by one e) graphs in Fig. 6. From these plots, I can see that modes are m = 0, 1,
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FIG. 5. The transverse impedance of the F and D magnets. Again the F magnet plot should be

compared to Macridin fig. 2 which has the same mistake that I talked about in the caption of

Fig. 4. Note: only the real part of the transverse impedance is relevant for growth or damping of

the head-tail mode. The imaginary part just shifts the frequency of that mode.

i.e. the rigid and the dipole head-tail, are the most unstable if the chromaticity is positive.

And the horizontal growth is stronger than the vertical if the chromaticity is positive. Also

modes m = 2, 3, 4 are actually unstable with negative chromaticity which is interesting.

Reminder: At the start of this section, I had summarized earlier work that observed that

the horizontal instability is stronger than the vertical. These simple calculations confirm

both the prior observations and Macridin’s simulations.

III. COUPLED BUNCH MODES (NARROW BAND IMPEDANCES)

For transverse coupled bunch modes, I must have narrow band impedances. For sim-

plicity, I will assume that Booster is populated with M = 84 bunches that have the same

9



TABLE II. Parameters for calculating head-tail growth rate at 400 MeV

Parameter Description Value Units

Nb number of protons in one bunch 6× 1012/81 = 7.4× 1010

E0 total energy at injection (400 + 938) = 1338 MeV

τL total bunch length 20.32a ns

η slip factor −0.46

rB radius of Booster 75.47 m

Lg length of F or D magnet 2.9 m

βFx horizontal beta function of F magnet 30.5 m

βFy vertical beta function of F magnet 6.7 m

βDx horizontal beta function of D magnet 10.5 m

βDy vertical beta function of D magnet 18.7 m

Ng number of F magnets (or D magnets) 48

a This number came from C. Bhat’s 4σ bunch length measurement FB-20170428-Ev17-19BT-3.

Technically τL = 2
√
6σ for a Gaussian bunch, but a shorter bunch length means that the instability is

worse and so I’ll leave it as is.

TABLE III. Parameters derived from Table II

Parameter Description Value Units

β relativistic beta at injection 0.7131

ω0 revolution frequency 2.83277× 106 rad/s

T0 revolution period (2π/ω0) 2.218× 10−6 s

Ib current of one bunch (qeNb/T0) 0.535× 10−2 A

intensity in each bunch. The growth rate, τmµ is given by (eq. 10.1 of Ng)

1

τmµ

= −qeMIbω0

4πβE0

∑
q

Re
[
β⊥Z

⊥
1 (ωq)

]
hm(ωq − χ/τL)

B
∑

q hm(ωq − χ/τL)
F ′
m (11)

where ωq = (qM+µ)ω0+ωβ+mωs, B = MτL/T0 is the bunching factor, τL is the full length

of the bunch in temporal units, ω0 is the revolution frequency and χ = ωξτL = ξω0τL/η is

the chromaticity phase shift across the bunch; η is the slip factor; Fm is the form factor that
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FIG. 6. The head-tail growth rate (rate of growing by one e) for head-tail modes m = 0, . . . , 4 as a

function of chromaticity. These results can be compared to Ng[2] fig. 17. My results are different

from Ng because I have a different lamination impedance than him.

is model dependent. Again, chromaticity, ξ, is how the longitudinal dynamics is coupled to

the transverse dynamics.

Now, let me break down the quantum numbers q, µ and m:

• q ∈ {0,±1,±2, . . . ,±∞} is the band number.

• 0 ≤ µ ≤ (M − 1) is the coupled bunch mode number. This number tells me that the

betatron phase changes by 2πµ/M from the earlier bunch to the later bunch.

• m ∈ {0,±1,±2, . . . ,±∞} is the longitudinal azimuthal mode number (see page 301

of Ng. And in particular, m = 1 is the dipole head-tail mode. Note: Unlike in the

description of longitudinal evolution, m = 0 is a valid mode for transverse evolution.

See page. 302 and page 370 of Ng. Note 1: Looking through all my references, none of

the authors explictly say that m ≥ 0 on the rhs of Eq. 11. However, it doesn’t make

sense that m < 0 on the rhs so I think it is |m| on the rhs of Eq. 11.

For Booster, the laminations don’t contribute to coupled bunch mode instabilities. This

instability comes from the unlaminated regions of the ring (see pg. 430 of Ng). If I assume

that the unlaminated region behaves like a beam pipe, i.e. I have resistive wall impedance

Z⊥
1

∣∣
RW

, then I have the following formula from Eq. 11 (this is eq. 10.2 of Ng)

1

τmµ

≈ − 1

1 +m

qeMIbω0

4πβE0

Re[β⊥ Z⊥
1

∣∣
RW

(ωq)]F
′
m(ωq, χ; τL) (12)
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where the form factor F ′ is (Note: I am clarifying Ng’s ambiguous notation in eq. 10.3)

F ′
m(ω, ξ; τL) =

2πhm(ω − ωξ)

τL
∫∞
−∞ hm(ω′) dω′ (13)

where ωξ = ξω0/η.

To continue, I will adopt Sacherer’s sinusoidal modes as the longitudinal distribution so

that I can calculate F ′.

A. Sacherer’s sinusoidal modes

If I use Sacherer’s sinusoidal modes, then I will find that∫ ∞

−∞
hm(ω

′) dω′ =
2π

τL
(14)

So Eq. 13 (again, clarifying Ng’s notation of eq. 10.3 to explicitly include chromaticity)

becomes

F ′
m(ω, ξ; τL) = hm(ω − ωξ; τL) (15)

This means that the peak of F ′
m will shift to the right as the chromaticity becomes more

negative because η < 0 at injection. See Fig. 1. Note: hm is, of course, dependent on τL. I

will only explicitly show it here.

B. Resistive Wall

I am going to model the non-laminated regions of Booster as stainless steel round beam

pipes. I will assume that the wall is thicker than the skin depth so that I can use eq. 1.60

of Ng

Z⊥
1

∣∣
RW

(ω) = (1− i sgn(ω))
Lc

πωb3σcδskin
(16)

where the skin depth is given by

δskin =

√
2c

Z0µrσc|ω|
(17)

For stainless steel, the value of its permeability and conductivity are

µr = 1 i.e. non magnetic stainless steel

σc = 1.35× 106 Ω−1m−1

 (18)
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As for the length, L, I will basically just take out the 96 gradient magnets and whatever

remains, I will assume that it is made of stainless steel beam pipe that has radius b = 1.5".

Thus,

L = 2πrB − 96× Lg = 474.2− 96× 2.9 = 195.8 m (19)

I will note that all terms in the growth rate formula, Eq. 11, are positive definite except

for the Re(Z⊥
1

∣∣
RW

) term. For positive growth, I need Re(Z⊥
1

∣∣
RW

) < 0 because of the overall

negative sign of the formula. Since Re(Z⊥
1 ) scales as 1/

√
ω, the most unstable mode will be

from the first negative ωq mode that is closest to the singularity. When I look at plots of

the form factor F ′, at zero chromaticity, shown in Fig. 1 , only F ′
0 has a value that is large

around the zero frequency. Therefore, I will only worry about the m = 0 coupled bunch

mode.

I will assume that the betatron tune is νβ = 6.8333. This means that the lowest negative

mode is ω−1 = [(−84 + 77) + 6.8333]ω0 = −0.1667ω0, i.e. when q = −1, M = 84, µ = 77,

m = 0. The real part of Z⊥
1

∣∣
RW

is plotted in Fig. 7 and I have marked ω−1 in blue. The

next lowest line is when q = −2 and ω−2 is at −37.9 MHz. Clearly, this line doesn’t see too

much of the resistive wall impedance.
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Transverse resistive wall impedance of a beam pipe

FIG. 7. Here is the real part of Z⊥
1

∣∣
RW

. I have also plotted ω−1 in blue to show that it is indeed

the mode that is closest to the singularity. The next mode ω−2 is at −37.9 MHz.
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C. Coupled bunch growth rates

Finally, I can calculate the e growth rate 1/τ0,77 mode when the chromaticity is zero. It

is (
1

τ0,77

)
x

= 196 s−1 ⇒ (τ0,77)x = 5 ms (20)(
1

τ0,77

)
y

= 586 s−1 ⇒ (τ0,77)y = 1.7 ms (21)

where I have used the average βx = 6.8 m and βy = 20.3 m for the non-laminated straights.

Clearly, both coupled bunch instablities are not that strong and can be stabilized with

negative chromaticity. The growth rates as a function of chromaticity are shown in Fig. 8.
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FIG. 8. The e growth rate and growth time as a function of chromaticity. From this plot, if I want

a 2 ms growth time for the vertical mode, then the vertical chromaticity should be at least −15

units.

Clearly, looking at the growth rates at zero chromaticity, the growth rates are not that

strong with vertical being the worse of the two. In practise, Booster does run with a

large negative chromaticity of about −20 units in the horizontal and −10 in the vertical.

This is opposite to what I would have expected, i.e. I would’ve thought that the vertical

chromaticity will be larger than the vertical. I think this means that resistive wall is not the

only transverse impedance that is causing the instabilities. Looking at Fig. 1, the m = 1, 2

head-tail modes cover the region of the RF cavity HOMs (100frev = 45 MHz). My suspicion

is that there are narrow band transverse impedances from the RF cavities that cause strong

coupled bunch mode instabilities. Note: Lebedev[11] in his 2006 analysis thinks that it is

m = 3 (slide 12) and that the high frequency part of the impedance between (80 – 300)

MHz are the major contributors to the instability (slide 23).
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IV. SUMMARY

I want to run with zero chromaticity because the tune footprint is at its minimum which

means that the lifetime should be improved because fewer resonance lines are crossed. How-

ever, running at zero chromaticity is not a freebie because the coupled bunch mode m = 0

is unstable and I suspect that the unaccounted for transverse impedances will also cause

m = 1 and 2 coupled bunch mode instabilities, which will require transverse dampers. I

can simply look at the hm power spectrum plots in Fig. 1, and the lamination impedances,

Fig. 5, the required bandwidth of the dampers should be at least 150 MHz (6 dB point of

the real part of the impedance and the width of h0 ≈ 2× 100 frev = 90 MHz).

Appendix A: PIPII parameters

The previous calculations that I did was for 400 MeV injection. Here’s the analysis for

800 MeV injection. The relevant changes to the previous parameter tables for PIPII are

shown in Table IV and Table V.

TABLE IV. PIPII parameters at 800 MeV

Parameter Description Value Units

Nb number of protons in one bunch 6.7× 1012/81 = 8.3× 1010

E0 total energy at injection (800 + 938) = 1738 MeV

τL total bunch length 4× 3.45 = 13.8a ns

η slip factor −0.26

a The 3.45 ns is the rms bunch length. This value came from F. Ostiguy’s simulations. See email dated 21

Nov 2023.

1. Head tail growth rate

Fig. 9 are the new plots generated with the PIPII parameters shown in Tables IV and V.

They can be compared to the plots in Fig. 6. In PIPII, the most offending mode still the

m = 0 mode for positive chromaticity. It is a lot stronger than present operations because
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TABLE V. PIPII parameters derived from Table IV

Parameter Description Value Units

β relativistic beta at injection 0.84

ω0 revolution frequency 3.34411× 106 rad/s

T0 revolution period (2π/ω0) 1.879× 10−6 s

Ib current of one bunch (qeNb/T0) 0.705× 10−2 A

of the higher intensity and shorter bunch length.
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FIG. 9. The head-tail growth rate (rate of growing by one e) for head-tail modes m = 0, . . . , 4 as a

function of chromaticity. These results can be compared to those in Fig. 6 for 400 MeV injection.

Again, modes m = 0, 1 are stable but m > 1 modes are unstable for negative chromaticity.

2. Coupled bunch modes

For coupled bunch modes, the PIPII growth rates are similar to present operations. At

ξ = −1, the 1/τ0,77 growth rates for both planes are(
1

τ0,77

)
x

= 183 s−1 ⇒ (τ0,77)x = 5.5 ms (A1)(
1

τ0,77

)
y

= 547 s−1 ⇒ (τ0,77)y = 1.8 ms (A2)

And the growth rates as a function of chromaticity are shown in Fig. 10. For 2 ms growth

rate, the chromaticity is −8 units. The reason for the smaller absolute value of chromaticty

when compared to present operations is because the PIPII ω−1 line is at −88.7 kHz and

samples a smaller Re[Z⊥] than for present operations which is at −75.1 kHz.
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FIG. 10. The e growth rate and growth time as a function of chromaticity. From this plot, if I

want a 2 ms growth time for the vertical mode, then the vertical chromaticity should between zero

to −8 units.

a. Coupled bunch growth rates when ξ = −1

At ξ = −1, for both planes, 1/τ0,77 growth rates for both planes are

(
1

τ0,77

)
x

= 183 s−1 ⇒ (τ0,77)x = 5.5 ms (A3)(
1

τ0,77

)
y

= 546 s−1 ⇒ (τ0,77)y = 1.8 ms (A4)

which is basically the same result as the ξ = 0 case.

b. Head-tail growth rates when ξ = −1

Suppose I set the ξ = −1 units for both planes, then the head-tail bunch growth rate for

modes m = 0, . . . , 4 from Fig. 9 are shown in Table VI. Note: the m = 1 head-tail mode is

the worst offender.

The difference power spectrum (See Eq.1)

∆Hm = hm(ω − ωξ)− hm(ω + ωξ) (A5)

for ξ = −1 and ξ = −20 are shown in Fig. 11. From, here I can see that ∆H0,1 essentially

disappears above 160 MHz.
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TABLE VI. Head-tail growth rate when ξ = −1

mode H rate (s−1) H time (ms) V rate (s−1) V time (ms)

0 −2305 −0.4 −1386 −0.7

1 −109 −9.1 −423 −2.4

2 203 4.9 192 5.2

3 45 22.2 48 20.9

4 64 15.5 56 17.7
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FIG. 11. ∆Hm for m = 0, . . . , 4 are plotted here. Essentially, for ∆H0,1, their contribution to

head-tail growth in Eq. 1 essentially disappears after 300frev = 160 MHz.

3. Experimental observation, high intensity (not PIPII parameters)

A study was done on 22 Feb 2023 to observe the spectrum of the beam. Two intensities

were used for comparison: Low intensity at 1.2 × 1012 protons with ξ = −6 both planes

which is meta-stable because it is at the threshold of instability and high intensity 4.8×1012

protons at ξ = −9 in both planes which is unstable. The spectrum of the difference signal

from the damper stripline pickup between these two conditions are plotted in Fig. 12. From

these observations, I can see the following:

1. The initial growth of the beam below 1 ms is from the notcher kicker.

2. As expected from theory, the horizontal instability is stronger than the vertical. For

horizontal, the growth rate is about 1200 s−1 and for the vertical rate it is about

476 s−1, i.e. about 2.5 times stronger.
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FIG. 12. This data was taken on 22 Feb 2023 with the damper stripline pickup. The two intensities

were 1.2×1012, ξ = −6 and 4.8×1012 protons, ξ = −9 both planes. The top two rows are horizontal

signals and the bottom two rows are the vertical signals. The vertical dashed lines in the difference

signal plots are where the Fourier transforms are taken. The spectra when the beam is stable

dictates how much the damper must reduce the amplitude of the sidebands of the unstable beam.

The horizontal spectrum of the unstable beam shows that the dampers have to reduce the sidebands

by at least 20 dB. The cyan region in the spectra plots marks the minimum bandwidth of 150 MHz.

3. The growth time for horizontal is about 0.8 ms and for the vertical is about 2 ms. These

values can be compared to the theoretical head-tail growth rates shown in Table VII.

(a) From this table I can see that the measured growth rates are within factors of

2 of theory. Note: I have not identified the modes that are responsible for the
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growth.

4. By comparing the unstable and stable spectra, I can conclude that the dampers must

have sufficient gain to damp the sidebands by at least 20 dB and that the bandwidth

of the damper must be at least 150 MHz. These measurements confirm my earlier

bandwidth conclusion in section IV.

TABLE VII. Theoretical Head-tail growth rate when ξ = −9 for 5× 1012 protons with present Booster

mode H rate (s−1) H time (ms) V rate (s−1) V time (ms)

0 −7089 −0.1 −3786 −0.3

1 −1718 −0.6 −2374 −0.4

2 655 1.5 210 4.7

3 521 1.9 614 1.6

4 138 7.3 116 8.6

4. Summary

If Booster is run with ξ = −1 in both planes, the m = 0 and 1 head-tail modes are

stabilized but the other other modes are unstable. The coupled bunch mode q = −1 ,

m = 0, µ = 77 (−75.1 kHz) is also unstable at this chromaticity. Therefore, it is necessary

to have the dampers stabilize the beam for low negative chromaticity operation, assuming

that there is insufficient Landau damping. The dampers will have to operate between DC

to at least 150 MHz to control both coupled bunch and the head-tail modes (from Fig. 11

and the > 6 dB point of the real part of the impedance in Fig. 5).
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