Xe doping analysis update

04/09/2020

L. Bomben, C. Cattadori

Survey of the total light yield

Survey of the Q/NQ light yield ratio

Survey of the slow component

Dope5 Data Sets

Event selection in the D1 to D5 data analysis

Discarded events by

- Saturation cut : events with saturation at 16000 ADC in the raw wfm
- Early cut: events with 10 or more photons in the pretrigger

Accepted events

• Late photons events (>10 ph)

<wfm> in Dope5 - No Quartz (NQ)

<wfm> in Dope5 - Quartz (Q)

<wfm> ratio in Dope5

Dope5 Merged Data Sets: independence from fit range

intercalibration in single Dope5 run

Dope5 Single Run analysis: NQ/Q

Ar $1/\tau_{\rm slow}$ vs Xe concentration

Ar light yield vs Xe concentration

Ar/Xe light yield ratio vs Xe concentration

Conclusions

- D5 data sets: merged & individual run analysis
 - τ_{xe} = 583 605 ns depending from fit range. 583 ns whole pulse tail
 - Q/NQ= 0.860 (0.003)
- τ_{slow} of residual Ar <wfm> is anticorrelated with [Xe]