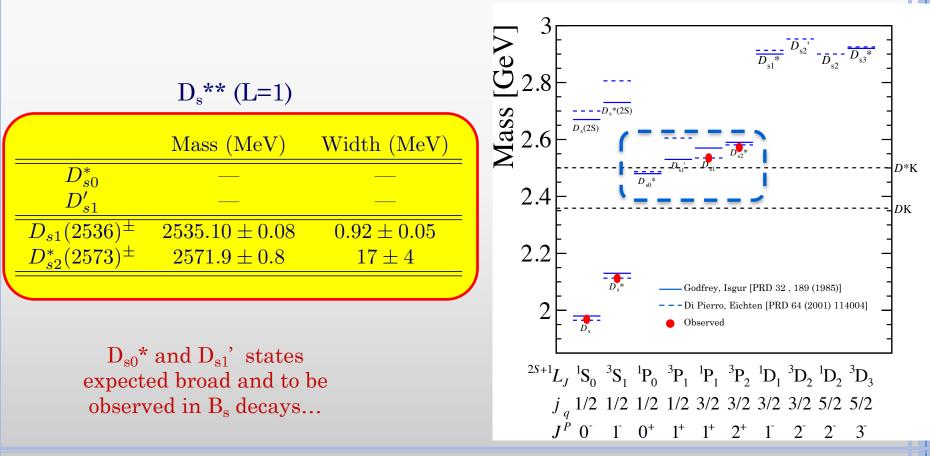
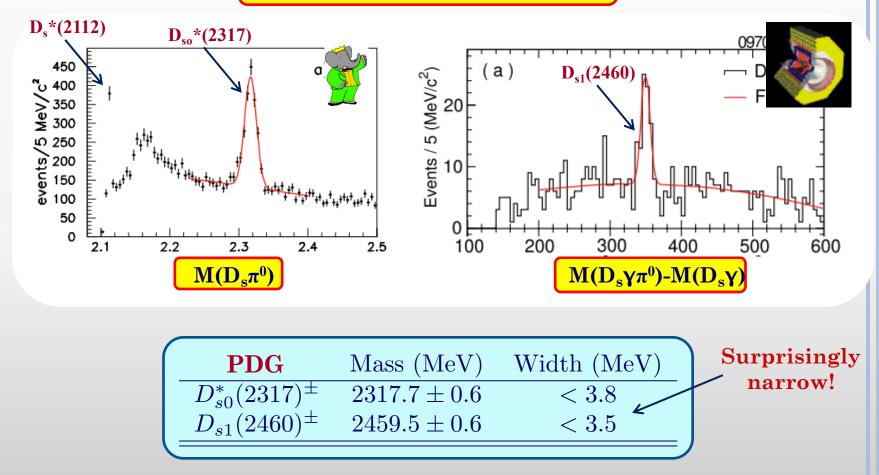

HEAVY MESON SPECTROSCOPY Marco Pappagallo **INFN and University of Bari** 23 September 2020

THE EXCITED D STATES


- > The charmed excited states studied in inclusive analyses and into B decays
- \succ The orbitally L=1 excited D^{**} states observed first
- Masses and properties well predicted by theory

23 September 2020

THE EXCITED D_S STATES


- > The charmed excited states studied in inclusive analyses and into B decays
- \succ The orbitally L=1 excited D_s^{**} states observed first
- Masses and properties well predicted by theory

23 September 2020

PUZZLE: EXCITED D_S MESONS: L=1, $j_q = 1/2(?)$

23 September 2020

ARE THEY THE MISSING L=1 STATES?

Mass [GeV] 9.7 8.7 8.7 9.7 $\overline{D_{s1}^{*}}^{*}$ $\overline{D_{s2}^{*}}^{*}$ $\overline{D_{s2}^{*}}^{*}$ $\overline{D_{s3}^{*}}^{*}$ Why are they so narrow? Lack of an isospin-conserving strong decay channel since the decays to DK and $D^{(*)}K$ final $D_s(2S)$ states are kinematically forbidden 2.4 Why are the masses much lower (~100 MeV) than $D_{s0}^{*}(2317)$ expected? Are they excited D_s states? 2.2 $J^{P} = (0^{+}, 1^{+})$ as expected for the L=1, $j_{q}=1/2$ states. D.* However many alternative interpretations proposed: DK or D_s π molecule, qq tetraquark/DK mixing ${}^{2S+1}L_{I}{}^{1}S_{0}{}^{3}S_{1}{}^{1}P_{0}{}^{3}P_{1}{}^{1}P_{1}{}^{3}P_{2}{}^{1}D_{1}{}^{3}D_{2}{}^{1}D_{2}{}^{3}D_{3}$ j_{a} 1/2 1/2 1/2 1/2 3/2 3/2 3/2 3/2 5/2 5/2 J^{P} 0 1 0 + 1 + 1 + 2 + 1 2 2 3 Decay Mode BR (%) $D_{*}^{*}(2112)$ $D_s^+\pi^0$ 5.8 ± 0.7 93.5 ± 0.7 $D^+_{s}\gamma$ $BR = 1.00^{+0.00}_{-0.14} \pm 0.14$ $D_{s0}^{*}(2317)$ $\overline{D_s^+\pi^0}$ seen $D^+_{a}\gamma$ $<\!\!5$ [BES: PRD 97 (2018) 051103] $<\!\!6$ $D_{s1}(2460)$ $D_s^+\pi^0$ 48 ± 11 $D_s^+\gamma$ 18 ± 4

23 September 2020

 $D^{*+}_{*}\gamma$

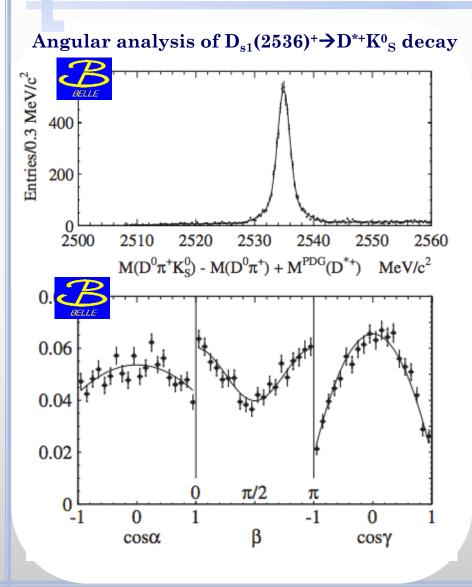
M. Pappagallo

 $<\!\!8$

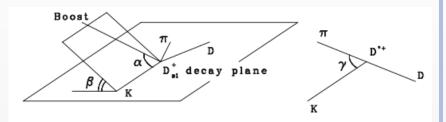
D*K

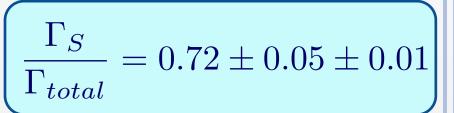
DK

ARE THEY THE MISSING L=1 STATES?


> Different mass splitting between the two doublets in a $q\bar{q}$ scenario: $M_{D_{s1}(2460)} - M_{D_{s0}^*(2317)} \neq M_{D_{s2}^*(2573)} - M_{D_{s1}(2536)}$

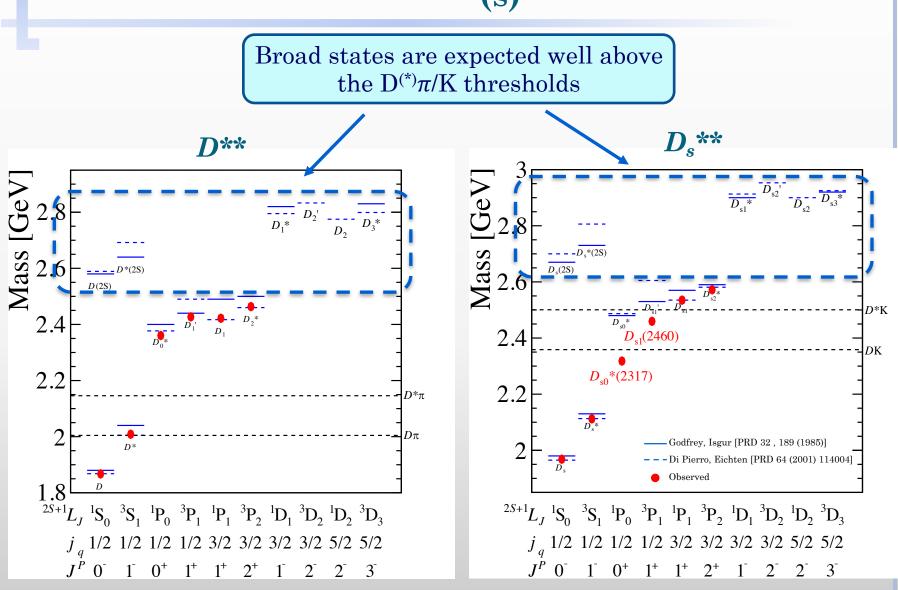
▷ B→DD_{s0}* branching ratios below expectations (i.e. ~1) for a qq state [PLB572, 164 (2003)][PRD69, 054002 (2004)]


$$\frac{\mathcal{B}(B^+ \to \bar{D}^0 D_{s0}^{*+})}{\mathcal{B}(B^+ \to \bar{D}^0 D_{s0}^{*+})} = 0.081^{+0.032}_{-0.025}$$
$$\frac{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})}{\mathcal{B}(B^0 \to D^- D_{s0}^{*+})} = 0.13 \pm 0.04$$


No $D_s^+\pi^\pm$ partners have been observed in inclusive studies [BaBar: PRD74 (2006) 032007] or in B decays [Belle: PRD 91 (2015) 092011] (upper limits more than an order of magnitude lower)

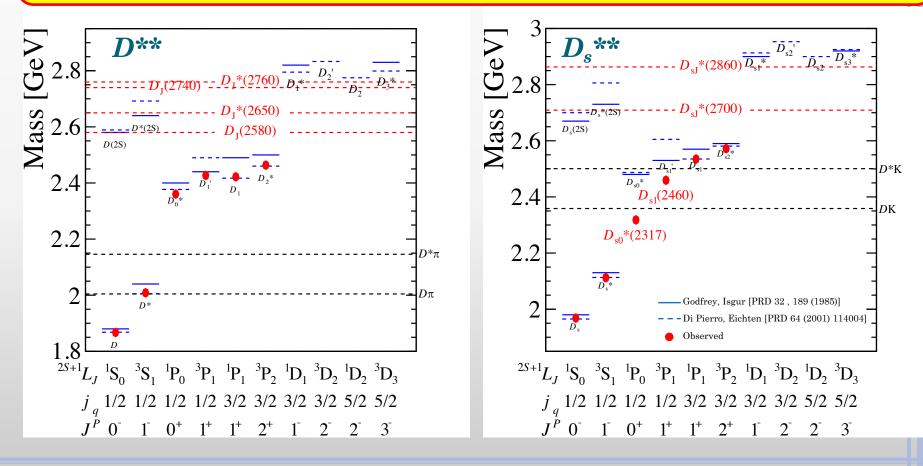
PUZZLE II: IS $D_{S1}(2536)^+$ THE EXCITED L=1, $j_q=3/2$ STATE?

[Belle: PRD77 (2008) 032001]



Contrary of HQET expectations, the S-wave contribution dominates!

23 September 2020


HIGHLY EXCITED D(s) MESONS

23 September 2020

HIGHLY EXCITED D(s) MESONS

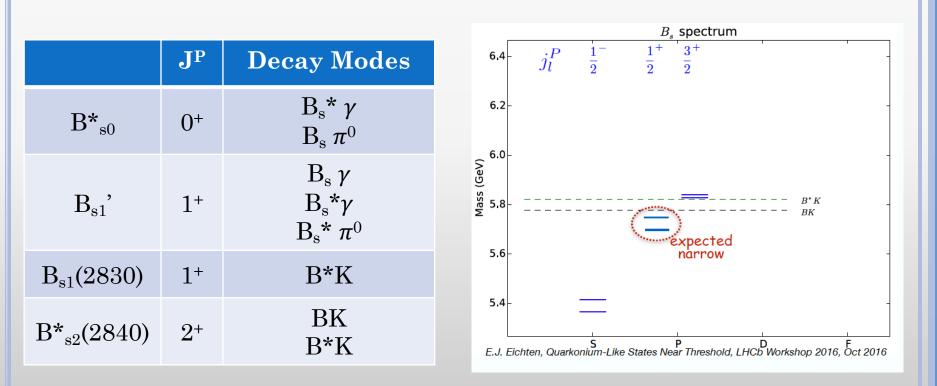
- Many broad states observed in prompt production and from B decays (Dalitz Analysis)
 First observation of a spin-3 meson
- \succ Likely to be radially or L = 2 excitations

23 September 2020

PROSPECTS: EXCITED D_(S) MESONS

$\checkmark D_{s0}^{*}(2317)$ and $D_{s1}(2460)$:

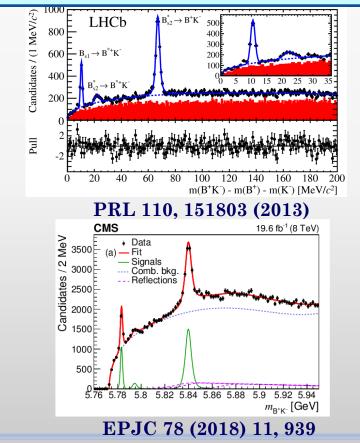
- ➤ Measurement of the natural widths (PANDA)
- Search for new decays modes (LHCb/Belle II/BES3)
- ➢ Production studies (e.g. D_{s1}(2460) → D_s γ production cross-section)
- ≻ Studies from $B_{(s)}$ decays (e.g. $B_s^0 \rightarrow D_s^- \pi^0 \pi^+$)
 - > Determination of $D_{s0}^{*}(2317)$ (and D_{s}^{*}) spin-parity


➢ Measurement of BR

Decay Channel	$D_{sJ}^{*}(2317)^{+}$	$D_{sJ}(2460)^+$
$D_s^+\pi^0$	Seen	Forbidden
$D_s^+\gamma$	Forbidden	Seen
$D_s^+ \pi^0 \gamma$ (a)	Allowed	Allowed
$D_s^*(2112)^+\pi^0$	Forbidden	Seen
$D_{sJ}^{*}(2317)^{+}\gamma$		Allowed
$D_s^+ \pi^0 \pi^0$	Forbidden	Allowed
$D_s^+ \gamma \gamma$ (a)	Allowed	Allowed
$D_{s}^{*}(2112)^{+}\gamma$	Allowed	Allowed
$D_s^+\pi^+\pi^-$	Forbidden	Seen

23 September 2020

EXCITED B_S STATES


➢ Since m_b > m_c, the expansion terms should have a smaller effect
 ➢ After the discoveries of D*_{s0}(2317) and D_{s1}(2460), many models predict 4 narrow states in the B_s sector as well

EXCITED B_S STATES

➢ Since m_b > m_c, the expansion terms should have a smaller effect
 ➢ After the discoveries of D*_{s0}(2317) and D_{s1}(2460), many models predict 4 narrow states in the B_s sector as well

	\mathbf{J}^{P}	Decay Modes
$\mathrm{B*}_{\mathrm{s0}}$	0+	${f B_{ m s}}^{st} \gamma \ {f B_{ m s}} \pi^0$
B _{s1} '	1+	$egin{array}{c} \mathrm{B_s} \gamma \ \mathrm{B_s}^{\star} \gamma \ \mathrm{B_s}^{\star} \pi^0 \end{array}$
B _{s1} (2830)	1+	B*K
B* _{s2} (2840)	2+	BK B*K

23 September 2020

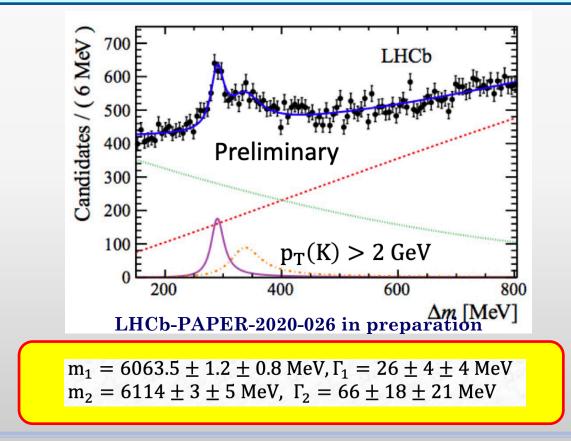
WHERE TO LOOK FOR THE OTHER TWO NARROW STATES?

The isospin-violating decays are dominant in the $D_{\rm s}$ sector but radiative decays might be dominant in the $B_{\rm s}$ sector

system		Q(keV)	overlap	dependence	Γ (keV) exptl BR			
$(c\overline{s})$	$0^+ \rightarrow 1^- + \gamma$	212	2.794	$r_{\overline{c}s}$	1.74		Decay Mode	BR (%)
		297		$G_A \delta_{\eta \pi 0}$		$D_s^*(2112)$	$\frac{D_s^+ \pi^0}{D_s^+ \pi^0}$	5.8 ± 0.7
					23.2		$D_s^+\gamma$	93.5 ± 0.7
$(c\overline{s})$		138	0.992	$r'_{\overline{c}s}$	2.74	$D_{s0}^{*}(2317)$		seen
		48		$g_A \delta_{\eta \pi 0}$	0.0079		$D_s^+ \gamma \ D^{*+} \gamma$	<5 < 6
		323	2.638	$r_{\overline{c}s}$	4.66	$D_{s1}(2460)$	$\frac{D_s}{D_s^+\pi^0}$	48 ± 11
	$1^+ \rightarrow 0^- + \gamma$	442	2.437	$r_{\overline{c}s}$	5.08	31()	$D_s^+\gamma$	18 ± 4
	$1^+ \to 1^- + \pi^0$	298		$G_A \delta_{\eta \pi 0}$			$D_s^{*+}\gamma$	<8
	$1^+ \to 0^- + 2\pi$	221		$g_A \delta_{\sigma_1 \sigma_3}$				
	total							
$(b\overline{s})$	$0^+ \to 1^- + \gamma$	293	2.536	$r_{\overline{b}s}$				
		297		$G_A \delta_{\eta \pi 0}$				
	total							
$(b\overline{s})$	$1^+ \to 0^+ + \gamma$	47		$r'_{\overline{hs}}$				
	$1^+ \rightarrow 1^- + \gamma$	335		$r_{\overline{b}s}$				
	$1^+ \rightarrow 0^- + \gamma$	381	2.423	$r_{\overline{b}s}$				
	$1^+ \rightarrow 1^- + \pi^0$	298		$G_A \delta_{\eta \pi 0}$				
		125		$g_A \delta_{\sigma_1 \sigma_3}$				
	total				117.7			
[Phys. Rev. D68:054024,2003]								
	$(c\overline{s})$ $(c\overline{s})$	$\begin{array}{c} 0^{+} \rightarrow 0^{-} + \pi^{0} \\ \hline \text{total} \\ \hline (c\bar{s}) & 1^{+} \rightarrow 0^{+} + \gamma \\ 1^{+} \rightarrow 0^{+} + \pi^{0} \\ 1^{+} \rightarrow 1^{-} + \gamma \\ 1^{+} \rightarrow 0^{-} + \gamma \\ 1^{+} \rightarrow 0^{-} + \gamma \\ 1^{+} \rightarrow 0^{-} + 2\pi \\ \hline \text{total} \\ \hline (b\bar{s}) & 0^{+} \rightarrow 1^{-} + \gamma \\ 0^{+} \rightarrow 0^{-} + \pi^{0} \\ \hline \text{total} \\ \hline (b\bar{s}) & 1^{+} \rightarrow 0^{+} + \gamma \\ 1^{+} \rightarrow 0^{-} + \gamma \\ 1^{+} \rightarrow 0^{-} + \gamma \\ 1^{+} \rightarrow 0^{-} + 2\pi \\ \hline \text{total} \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

23 September 2020

EXCITED B_S STATES

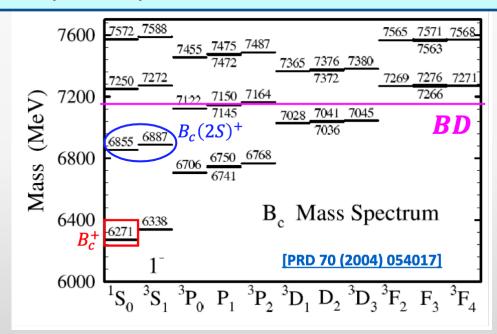

➢ Since m_b > m_c, the expansion terms should have a smaller effect
 ➢ After the discoveries of D*_{s0}(2317) and D_{s1}(2460), many models predict 4 narrow states in the B_s sector as well

	\mathbf{J}^{P}	Decay Modes
$\mathrm{B*}_{\mathrm{s0}}$	0+	${f B_s}^{m \star} m \gamma \ {f B_s} \pi^0$
B _{s1} '	1+	$\begin{array}{c} \mathbf{B_s} \boldsymbol{\gamma} \\ \mathbf{B_s}^{\star} \boldsymbol{\gamma} \\ \mathbf{B_s}^{\star} \boldsymbol{\pi}^0 \end{array}$
B _{s1} (2830)	1+	B*K
B* _{s2} (2840)	2^{+}	BK B*K

HIGHLY EXCITED B_S STATES

➢ Excess observed in B+K- spectrum, ∼300 MeV above threshold

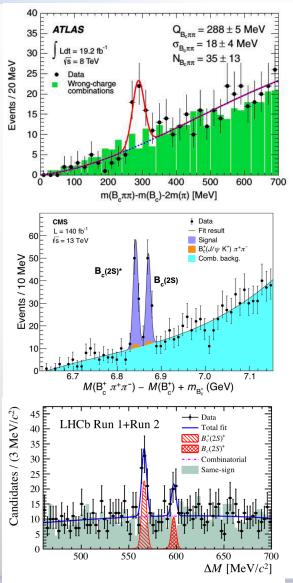
- Interpreted as two overlapping Bs** states
- Likely L=2 orbitally excited mesons
- > Significance of two peak structure w.r.t. single peak = 7σ



23 September 2020

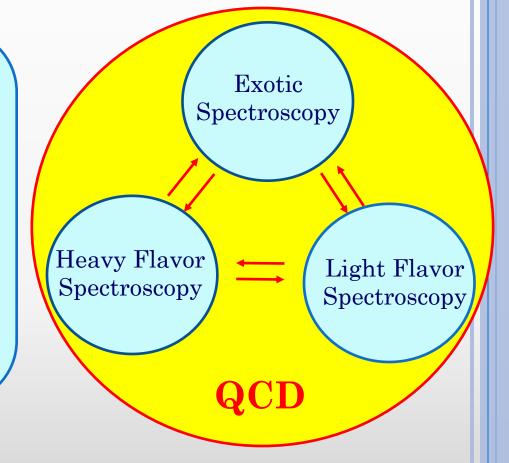
Spectroscopy of the B_C Meson

PRL 113, 212004 (2014) PRL 122, 132001 (2019) PRL 122, 232001 (2019) arXiv:2008.08629


- B_c spectrum predicted by various models and Lattice QCD
- States below BD threshold can only undergo radiative or hadronic transitions to the ground state which decays weakly

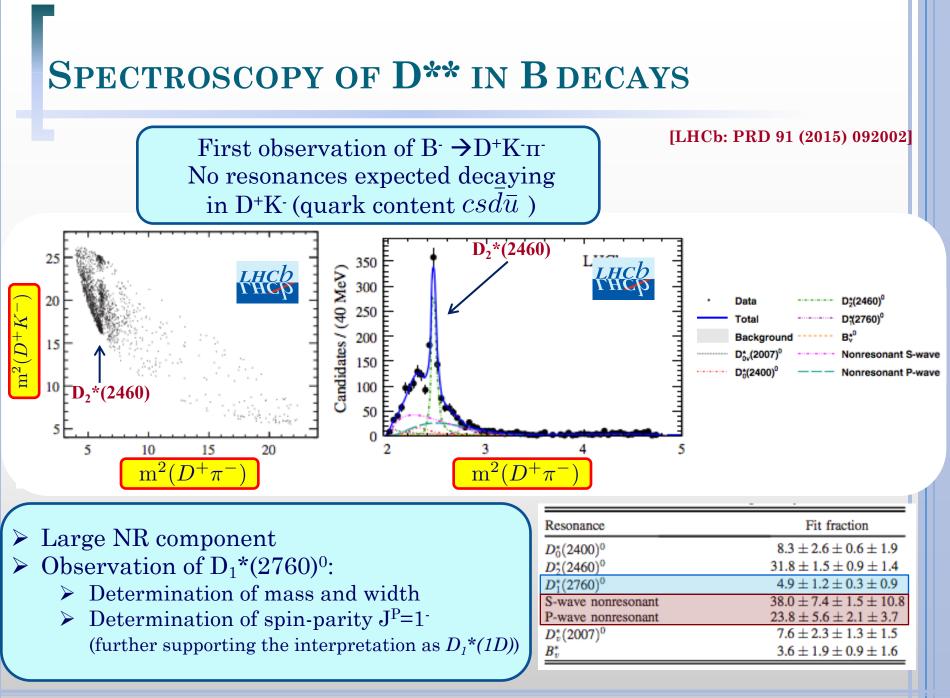
N.B. Dalitz plot analyses such as $B_c{}^+ \to B^+ K^- \pi^+\,$ can shed new light on excited $B_{sJ}\,$ states from the $B^+ K^-$ threshold to $\sim 6135 MeV$

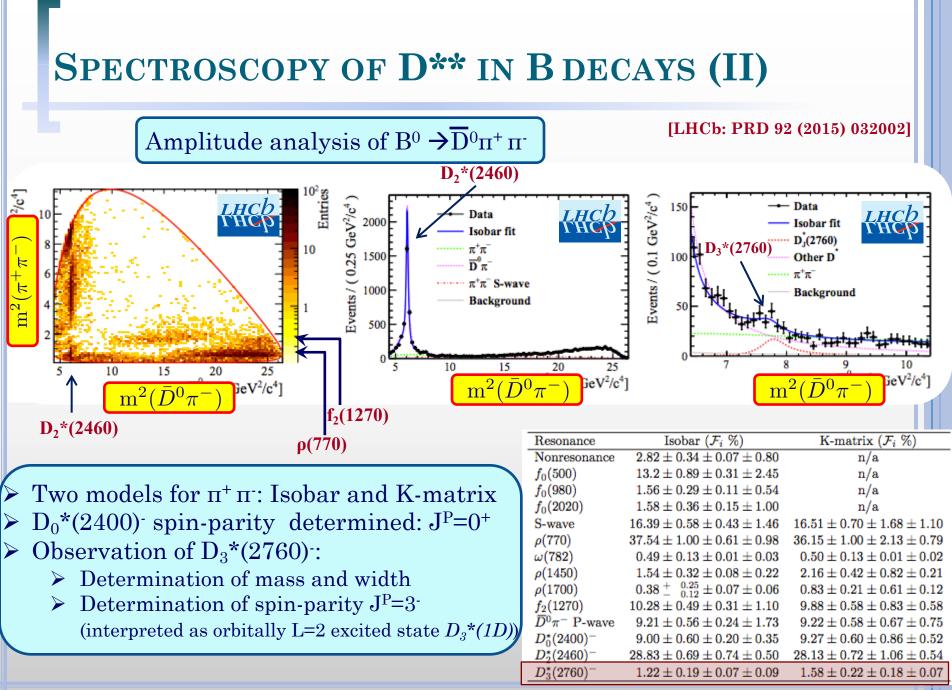
23 September 2020


M. Pappagallo

16

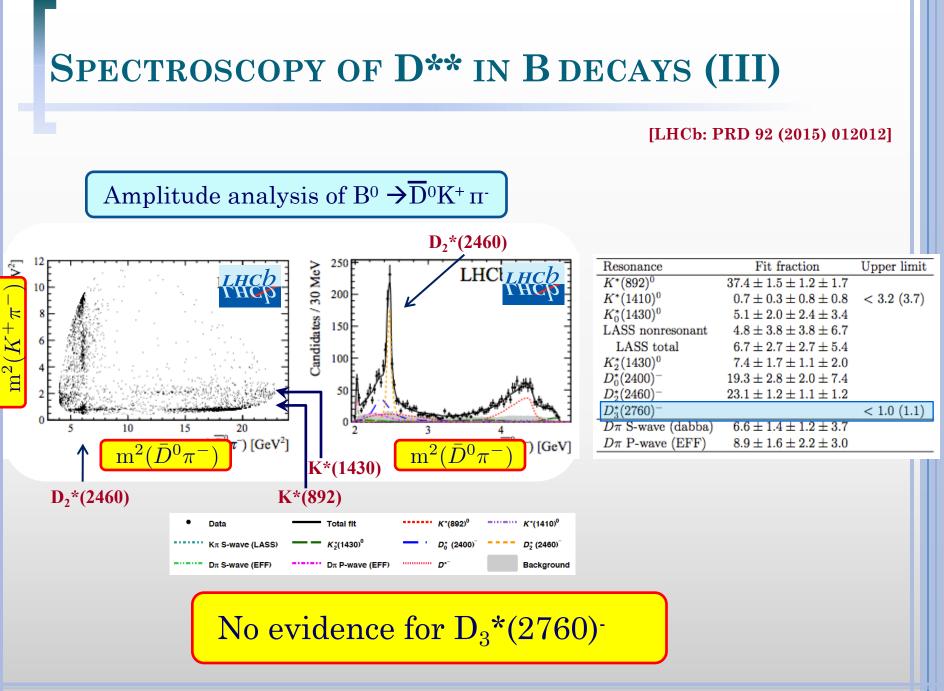
SUMMARY

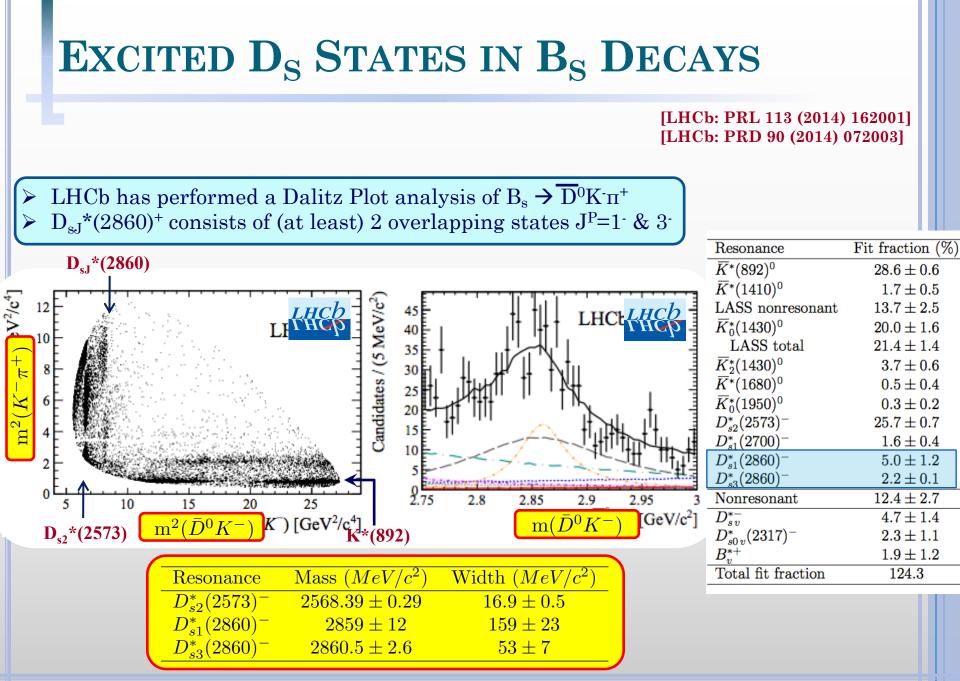

- Observations of new states challenge our current understanding of QCD and the validity of the HQET assumptions
- Interplay between light and heavy quark spectroscopy: (e.g.) the poor knowledge of N*, Λ* baryons has a large impact
- Sinergy with the theoretical community to improve models in amplitude analyses



The LHC experiments will go under major upgrade in the next years, while Belle II has started taking data. PANDA, J-PARC, JLab and other hadron facilities will play an important role as well.

23 September 2020


Back-up slides

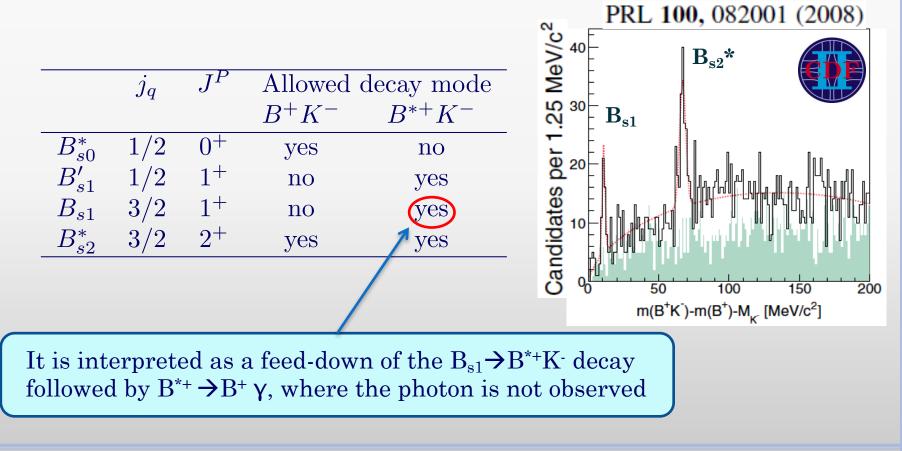


M. Pappagallo

20

Relevance of the Width

> The width might be sensitive to the model and internal structure


		$\Gamma(D_{s1}(2460)^+ \to D_s^* \pi^0) \text{ (keV)}$
	PRD 68 (2003) 054024	21.5
	PRD 69 (2004) 114008	32
cs	PRD 73 (2006) 034004	35 - 51
	PRD 73 (2006) 054012	35
	PLB 568 (2003) 254	$\simeq 10$
	EPJC 47 (2006) 445	1.86 - 4.42
	PLB 570 (2003) 180	7 ± 1
L C	arXiv:1406.5804	9.0 ± 2.1
Molecule	PRD 76 (2007) 014005/8	50.1 - 79.2
	EPJA (2014) 50	78 ± 14

N.B. $\Gamma(D_{s1}(2460)^+ \to D_s^* \pi^0) / \Gamma_{TOT} = (48 \pm 11)\%$

23 September 2020

$B_{S1}(5830)^0$ AND $B_{S2}^*(5840)^0$

Two narrow peaks observed in the B⁺K⁻ by CDF
 B_{s2}^{*} is the only narrow state expected. What is the nature of the second signal?

23 September 2020