# Heavy baryons (conventional resonances) - Theory - 

Atsushi Hosaka RCNP, Osaka University ASRC, Japan Atomic Energy Agency SnowMass21, Sept. 23, 2020, Online

- $q q Q$ baryons split the $\lambda$ and $\rho$ modes
- Masses and decay properties
- Some discussions on Roper siblings
- $P_{c}$ as a threshold phenomena


## Baryon spectrum

Explain various baryon resonances in simple words $\rightarrow$ Classify the excitation modes


## Spectrum - light vs heavy (detail)

## Light

$3 \times 3 \times 3=1+8+8+10$
$\boldsymbol{\Sigma}: 28,48,210$
\: ${ }^{21},{ }^{28},{ }^{4} 8$

Heavy

$$
3 \times 3 / 2^{-}
$$

$$
3 \times 1 / 2^{-}
$$

$$
3 \times 3=\overline{3}+6
$$

$$
\boldsymbol{\Lambda} \overline{3}_{\lambda}, \overline{3}_{\rho}
$$

$$
j_{q q}\left(l_{1, p}\right) \otimes 1 / 2_{Q}=J^{P}
$$

$$
\ldots \begin{aligned}
& { }^{3} \mathrm{P}_{2} \\
& { }^{3} \mathrm{P}_{1} \ldots \ldots \\
& { }^{3} \mathrm{P}_{0} \\
& \cdots
\end{aligned}
$$

$$
\begin{array}{r}
1 \times 3 / 2^{-} \\
\rightarrow \quad 1 \times 1 / 2^{-} \\
\hline
\end{array}
$$

":

## $\lambda$ (lowered) and $\rho$ split well for $\Lambda$



- Establish the distinctive $\lambda$ and $\rho$ modes
- Masses, spin and parity
- Decays and productions


## Baryon spectrum (negative parity)



## Decays

Ex. of $\Lambda_{c}(2620) 3 / 2^{-} \rightarrow \Lambda_{\mathrm{gs}} \pi \pi$
$\Delta \mathrm{E}(2620) \sim 330 \mathrm{MeV}$ supports the $\lambda$ mode



Three-body Dalitz analysis



$R=\frac{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {non-resonant })\right)}{\Gamma\left(\Lambda_{c}^{*} \rightarrow \Lambda_{c} \pi^{+} \pi^{-}(\text {total })\right)}$
$\sim 0.54 \pm 0.14 *$ prefers $\lambda$ mode
H. Albrecht et al. (ARGUS Collaboration),

Phys. Lett. B 6441 317, 227 (1993).

## Roper siblings in various flavors?

Takayama, Hosaka and Toki
Prog.Theor.Phys. 101 (1999) 1271-1283


Arifi, Nagahiro, Hosaka and Tanida Phys.Rev.D 101 (2020) 11, 111502, e-Print: 2004.07423 [hep-ph]

LHCb, JHEP 06 (2020) 136
$\Lambda_{c}(2765), \Xi_{c}(2970), \Lambda_{b}(6072)$


## Similarities

$\Delta M \sim 500 \mathrm{MeV}$
$\Gamma \sim 50-100 \mathrm{MeV}$
$J^{\mathbf{P}} \sim 1 / 2^{+}$?

## Describes well

LHCb, JHEP 06 (2020) 136, arXiv:2002.05112 [hep-ex] Arifi, Arifi, Nagahiro, Hosaka and Tanida, Phys.Rev.D 101 (2020) 11, 111502

$$
\Lambda_{b}(6072) \rightarrow \Lambda_{b}+\pi+\pi
$$



Line shape is explained by the HQ symmetry ~ quark model shares $\rightarrow$ suggesting to study in the quark model

## Conventional description with a heavy quark

## (1) Masses - lowering of $\lambda$ modes

| $\Lambda_{c}$ | $\Lambda_{b}$ | $\Xi_{c}$ |
| :---: | :---: | :---: |
| $\operatorname{EXP}$ (Model) | EXP (Model) | $\operatorname{EXP}$ (Model) |


$N=2=$|  | $1 / 2^{+}$ | $2765(2857)$ | $6072(6153)$ | $2970(2924)$ |
| :--- | :--- | :--- | :--- | :--- |


$N=1$| $\sim 200 \mathrm{MeV}$ |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $\uparrow$ | $3 / 2^{-}$ | $2625(2630)$ | $5920(5939)$ | $2815(2783)$ |
| $1 / 2^{-}$ | $2595(2628)$ | $5912(5938)$ | $2790(2773)$ |  |

~ 300 MeV
$\lambda$ mode dominant
$N=0 \xrightarrow{\downarrow} 1 / 2^{+} \quad 2286(2285) \quad 5620(5618) \quad 2467(2466)$
$\rightarrow$ Consistent

Yoshida et al, Phys.Rev.D 92 (2015) 11, 114029<br>Roberts and Pervin, Int.J.Mod.Phys.A 23 (2008) 2817-2860

## (2) Decays (Pion emission) Focus on $\Lambda_{c}$ baryons



Using the leading terms of $\mathscr{L}_{\pi q q}=\frac{g_{A}^{q}}{2 f_{\pi}} \bar{q} \gamma_{\mu} \gamma_{5} q \vec{\tau} q \cdot \partial^{\mu} \vec{\pi}$
The total width is too small

## Assuming $\Lambda_{c}(2765)$ to be of $J P=1 / 2^{+}$

- The pion transition is forbidden to the leading order

$$
\Lambda_{c}^{*} \quad S=I=0 \xlongequal{\overline{\frac{\vec{\sigma} \cdot \vec{q} \tau_{a}}{\pi^{a}(q)}} S=I=1 \quad \sum_{c} .}
$$

$$
\left.A \sim(\text { Spin }- \text { isospin part }) \times\left\langle\Sigma_{c}(\text { orbital })\right| e^{i \vec{q} \cdot \vec{x}} \mid \Lambda_{c}^{*}(\text { orbital })\right\rangle \rightarrow 0!
$$

$$
n=0 \quad n=1
$$

## Suppressed $\sim$ orthogonality of $\Sigma_{c}$ and $\Lambda_{c}{ }^{*}$

- Similar case is known for the EM transition

Kubota, Ohta, Phys.Lett.B 65 (1976) 374-376
Higher order in $\mathbf{1 / m} \sim$ relativistic corrections
Table 1
Photoelectric matrix elements $A^{\mathrm{NR}}$ calculated using a simple nonrelativistic model and relativistic corrections $A^{\mathrm{RC}}$. The experimental data are taken from table IV.1. at p. 160 of ref. [1]. Units for these amplitudes are $10^{-3} \mathrm{GeV}^{-1 / 2}$.

| State | Multiplet | $\lambda N$ | $A^{\mathrm{NR}}$ | $A^{\mathrm{RC}} \times \frac{M_{\mathrm{q}}}{\mu k} \sqrt{\frac{2 k}{4 \pi}}\left(2-\frac{1}{g}\right)^{-1}$ | $A^{\mathrm{RC}}$ | $A^{\mathrm{NR}}+A^{\mathrm{RC}}$ | $A^{\exp }$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}_{11}(1470)$ | ${ }^{2} 8_{1 / 2}\left[56,0^{+}\right]_{2}$ | $\frac{1}{2}\left[\begin{array}{l}p \\ n\end{array}\right]$ | $\begin{array}{r}26 \\ -17 \\ \hline\end{array}$ | $\left[\begin{array}{r}3 \\ -2\end{array}\right] \times R_{00}^{s^{*}} / 3 \sqrt{2}$ | -31 21 | -5 4 | $-74 \pm 15$ $34 \pm 35$ |

## Relativistic corrections

Foldy-Wouthuysen-Tani transformation $\sim 1 / m$ expansion

$$
\begin{aligned}
& \begin{aligned}
& \mathscr{L}_{\pi q q}= \frac{g_{A}^{q}}{2 f_{\pi}} \bar{q} \gamma_{\mu} \gamma_{5} q \vec{\tau} q \cdot \partial^{\mu} \vec{\pi} \\
& {\left[\sim(\sigma q)+\frac{\omega}{2 m}((\sigma q)-2(\sigma p))\right.}
\end{aligned} \\
& {\left[\begin{array}{cc}
-\frac{1}{8 m^{2}}\left[(\sigma q) q^{2}+2(\sigma q)(q p)-2(\sigma p) q^{2}+4(\sigma q) p^{2}-4(\sigma p)(p q)\right] \\
\omega^{2} & \text { Generate unsuppressed terms }
\end{array}\right.} \\
& (a b)=\vec{a} \cdot \vec{b}, \omega=\sqrt{m_{\pi}^{2}+\vec{q}^{2}} \\
& \boldsymbol{p} \text { : internal quark momentum }
\end{aligned}
$$

Preliminary $\Gamma^{\prime} s$

| $\Lambda_{c}(2765)$ | $50-70$ | $3[1]$ | $\sim 25$ |
| :---: | :---: | :--- | :---: |
| $\Lambda_{c}(2625)$ | $<0.97$ | $0.3[2]$ | $\sim 0.3$ |
| $\Lambda_{c}(2595)$ | 2.6 | $2.2[1]$ | $\sim 2.2$ |
| $\Sigma_{c}(2520)$ | 15 | $31[1]$ | $\sim 10$ |
| $\Sigma_{c}(2455)$ | 1.9 | $4.3[1]$ | $\sim 1.3$ |

## $P_{c}$ - Nucleon resonance above the $c \bar{c}$ threshold $\sim u u d c \bar{c}$

A couple channel model with MB and 5q core


Yamaguchi, Hosaka, Santopinto et al Phys.Rev. D96 (2017), 114031, Phys.Rev.D 101 (2020) 9, 091502


- One parameter fit explains the three states as molecules: masses and decay widths
- OPEP and quark core couplings are important to form hadronic molecules


## Summary and prospects

(1) The $\boldsymbol{\lambda}$ and $\boldsymbol{\rho}$ modes should be further established, especially $\boldsymbol{\rho}$ modes.
$\lambda$ mode: diquark motion, $\rho$ mode: diquark excitation.
(2) Roper siblings with $H \mathbf{Q}$ seem to be explained by the QM . as supplemented by relativistic corrections.

Their similarities in a wide range of flavors must be understood.
Stiffness/compressibility of the smallest matter.
(3) Pc, the nucleon excited states is a molecular like.

The nucleon shows with completely different structure by energy.
Analogous to ${ }^{12}$ C ground state and the Hoyle state of $\alpha$ cluster.

## $\boldsymbol{\Omega} \mathbf{c}:$ Two opposite models



## Quark model: Yoshida et al, Phys.Rev.D 92 (2015) 11, 114029

Five states appear as $\lambda$ modes $\sim$ agrees with the QM but splittings are too narrow

## Chiral soliton: Kim, Polyakov, Praszałowicz, Phys.Rev.D 96 (2017) 1, 014009

Chiral interaction lowers positive parity states
Determination of parity is important




## "Quantum Field Theory", Itzykson and Zuber, McGraw-Hill, 1980, p71

$$
H^{\prime \prime \prime}=\beta\left[m+\frac{(\mathbf{p}-e \mathbf{A})^{2}}{2 m}-\frac{(\mathbf{p})^{4}}{8 m^{3}}\right]+e A^{0}-\frac{e}{2 m} \beta \boldsymbol{\sigma} \cdot \mathbf{B}
$$

$1 / m^{2}$ terms

$$
\begin{equation*}
\stackrel{>}{\mathrm{A}}+\left(-\frac{i e}{8 m^{2}} \boldsymbol{\sigma} \cdot \operatorname{curl} \mathbf{E}-\frac{e}{4 m^{2}} \boldsymbol{\sigma} \cdot \mathbf{E} \times \mathbf{p}\right)-\frac{e}{8 m^{2}} \operatorname{div} \mathbf{E} \tag{2-82}
\end{equation*}
$$

The interpretation of the various terms deserves some cemments. The term in the bracket is the expansion (to the required order) of $\left[(\mathbf{p}-e \mathbf{A})^{2}+m^{2}\right]^{1 / 2}$. The second term $e A^{0}$ is the electrostatic energy of a point-like charge, whereas the third one represents the energy of a magnetic dipole for $g=2$. The term inside parentheses may be seen to correspond to a spin-orbit (s.o.) interaction. Indeed, for a static spherically symmetric potential, curl $\mathbf{E}=0$ and $\mathbf{E}=-\nabla A^{0}$. Therefore

$$
\sigma \cdot(\mathbf{E} \times \mathbf{p})=-\frac{1}{r} \frac{d A^{0}}{d r} \sigma \cdot(\mathbf{r} \times \mathbf{p})=-\frac{1}{r} \frac{d A^{0}}{d r} \sigma \cdot \mathbf{L}
$$

