Heavy baryons (*conventional resonances*) — Theory —

Atsushi Hosaka RCNP, Osaka University ASRC, Japan Atomic Energy Agency SnowMass21, Sept. 23, 2020, Online

- qqQ baryons split the λ and ρ modes
- Masses and decay properties
- Some discussions on Roper siblings
- P_c as a threshold phenomena

Baryon spectrum

Explain various baryon resonances in simple words \rightarrow Classify the excitation modes

Baryon spectrum (negative parity)

Snowmass21, Heavy-Quarks Conventional Hadrons2020

 m_{13}^2 (GeV

5.9

6x1

3x1

0x1

Three-body Dalitz analysis

Roper siblings in various flavors ?

Takayama, Hosaka and Toki Prog.Theor.Phys. 101 (1999) 1271-1283

Snowmass21, Heavy-Quarks Conventional Hadrons2020

Arifi, Nagahiro, Hosaka and Tanida Phys.Rev.D 101 (2020) 11, 111502,

e-Print: 2004.07423 [hep-ph]

Describes well

LHCb, JHEP 06 (2020) 136, arXiv:2002.05112 [hep-ex] Arifi, Arifi, Nagahiro, Hosaka and Tanida, Phys.Rev.D 101 (2020) 11, 111502

$$\Lambda_b(6072) \rightarrow \Lambda_b + \pi + \pi$$

Line shape is explained by the HQ symmetry \sim quark model shares \rightarrow suggesting to study in the **quark model**

Snowmass21, Heavy-Quarks Conventional Hadrons2020

Conventional description with a heavy quark

(1) Masses - lowering of λ modes

→ Consistent

Yoshida et al, Phys.Rev.D 92 (2015) 11, 114029 Roberts and Pervin, Int.J.Mod.Phys.A 23 (2008) 2817-2860

(2) Decays (Pion emission)

Focus on Λ_c baryons

	Width Γ in MeV			
	EXP	Model		
$\Lambda_c(2765)$	50-70	3 [1]		
$\Lambda_c(2625)$	< 0.97	0.3 [2]		
$\Lambda_c(2595)$	2.6	2.2 [1]		
$\Sigma_{c}(2520)$	15	31 [1]		
$\Sigma_{c}(2455)$	1.9	4.3 [1]		

[1] Nagahiro et al, PRD95, 014023 (2017)[2] Arifi et al, PRD95, 114018 (2017)

Assuming $\Lambda_c(2765)$ to be of $J^P = 1/2^+$

• The pion transition is forbidden to the leading order

$$\Lambda_{c}^{*} \quad S = I = 0 \xrightarrow{\sigma \cdot q} \tau_{a} \quad S = I = 1 \quad \Sigma_{c}$$

 $A \sim (\text{Spin} - \text{isospin part}) \times \langle \sum_{c} (\text{orbital}) | e^{i \vec{q} \cdot \vec{x}} | \Lambda_{c}^{*} (\text{orbital}) \rangle \rightarrow 0!$ $n = 0 \qquad n = 1$

Suppressed ~ orthogonality of Σ_c and Λ_c^*

• Similar case is known for the EM transition

Kubota, Ohta, Phys.Lett.B 65 (1976) 374-376

10/13

Higher order in $1/m \sim$ **relativistic corrections**

Table 1 Photoelectric matrix elements A^{NR} calculated using a simple nonrelativistic model and relativistic corrections A^{RC} . The experimental data are taken from table IV.1. at p. 160 of ref. [1]. Units for these amplitudes are $10^{-3} \text{ GeV}^{-1/2}$.

State	Multiplet	λΝ	$A^{\rm NR}$	$A^{\mathrm{RC}} \times \frac{M_{\mathrm{q}}}{\mu k} \sqrt{\frac{2k}{4\pi}} \left(2 - \frac{1}{g}\right)^{-1}$	ARC	$A^{\text{NR}} + A^{\text{RC}}$	A ^{exp}
P ₁₁ (1470)	² 8 _{1/2} [56,0 ⁺] ₂	$\frac{1}{2} \begin{bmatrix} p \\ n \end{bmatrix}$	26 -17	$\begin{bmatrix} 3 \\ -2 \end{bmatrix} \times R_{00}^{s^*}/3\sqrt{2}$ 1, Heavy-Quarks Conventional Hadrons	-31 21	-5 4	-74 ± 15 34 ± 35

Relativistic corrections

Foldy–Wouthuysen-Tani transformation $\sim 1/m$ expansion

p: internal quark momentum

Preliminary Γ's		EXP	Model (NR)	+ Corrections
	$\Lambda_{c}(2765)$	50-70	3 [1]	~ 25
	$\Lambda_c(2625)$	< 0.97	0.3 [2]	~ 0.3
	$\Lambda_c(2595)$	2.6	2.2 [1]	~ 2.2
	$\Sigma_{c}(2520)$	15	31 [1]	~ 10
	$\Sigma_{c}(2455)$	1.9	4.3 [1]	~ 1.3

 P_c - Nucleon resonance above the $c\bar{c}$ threshold ~ $uudc\bar{c}$ A couple channel model with MB and 5q core

- One parameter fit explains the three states as molecules: masses and decay widths
- OPEP and quark core couplings are important to form hadronic molecules Snowmass21, Heavy-Quarks Conventional Hadrons2020

Summary and prospects

- (1) The λ and ρ modes should be further established, especially ρ modes. λ mode: *diquark* motion, ρ mode: *diquark* excitation.
- (2) *Roper siblings with HQ* seem to be explained by the QM. as supplemented by *relativistic corrections*. Their similarities in a wide range of flavors must be understood. *Stiffness/compressibility of the smallest matter.*
- (3) *Pc*, the *nucleon excited states* is a molecular like.
 The nucleon shows with *completely different structure* by energy.
 Analogous to ¹²C ground state and the *Hoyle state of α cluster*.

$\Omega c:$ Two opposite models

Quark model: Yoshida et al, Phys.Rev.D 92 (2015) 11, 114029 Five states appear as λ modes ~ agrees with the QM but splittings are too narrow

Chiral soliton: Kim, Polyakov, Praszałowicz, Phys.Rev.D 96 (2017) 1, 014009 Chiral interaction lowers positive parity states

Determination of parity is important

Snowmass21, Heavy-Quarks Conventional Hadrons2020

Snowmass21, Heavy-Quarks Conventional Hadrons2020

"Quantum Field Theory", Itzykson and Zuber, McGraw-Hill, 1980, p71

.

$$H^{\prime\prime\prime} = \beta \left[m + \frac{(\mathbf{p} - e\mathbf{A})^2}{2m} - \frac{(\mathbf{p})^4}{8m^3} \right] + eA^0 - \frac{e}{2m}\beta\boldsymbol{\sigma}\cdot\mathbf{B}$$

$$\frac{1/m^2 \text{ terms}}{6m^2} + \left(-\frac{ie}{8m^2}\boldsymbol{\sigma}\cdot\text{curl }\mathbf{E} - \frac{e}{4m^2}\boldsymbol{\sigma}\cdot\mathbf{E}\times\mathbf{p} \right) - \frac{e}{8m^2} \text{ div }\mathbf{E} \qquad (2-82)$$

The interpretation of the various terms deserves some comments. The term in the bracket is the expansion (to the required order) of $[(\mathbf{p} - e\mathbf{A})^2 + m^2]^{1/2}$. The second term eA^0 is the electrostatic energy of a point-like charge, whereas the third one represents the energy of a magnetic dipole for g = 2. The term inside parentheses may be seen to correspond to a spin-orbit (s.o.) interaction. Indeed, for a static spherically symmetric potential, curl $\mathbf{E} = 0$ and $\mathbf{E} = -\nabla A^0$. Therefore

$$\boldsymbol{\sigma} \cdot (\mathbf{E} \times \mathbf{p}) = -\frac{1}{r} \frac{dA^0}{dr} \,\boldsymbol{\sigma} \cdot (\mathbf{r} \times \mathbf{p}) = -\frac{1}{r} \frac{dA^0}{dr} \,\boldsymbol{\sigma} \cdot \mathbf{L}$$