Snowmass Hadron Spectroscopy Meeting: Heavy-Quark Conventional Hadrons

Heavy Baryons (experimental)

Ruslan Chistov

LPI RAS, Moscow

Outline

- 1. Charm baryons and prospects
- 2. Exotic baryons with hidden charm
- 3. Beauty baryons and prospects
- 4. Summary

Charm Baryons: today's landscape

Compared to ~20 years ago picture (ARGUS, CLEO, CDF) several interesting features added:

- Decay modes with light baryon+charm meson: D⁰p, DΛ (BaBar, Belle)
- Decays of excited Ξ_c not only to $\Xi_c\pi$ or $\Xi_c\pi\pi$ but also to $\Lambda_cK(\pi)$. And these modes dominate! (sq diquark is cutting so that s-quark go to form K meson) (Belle, <u>PRL 97, 162001 (2006)</u>)
- Unexpectedly *narrow* 5 new Ω_c states were observed by LHCb

Charm Baryons: selected recent results

Charm Baryons: selected recent results

Double charm baryons Ξ_{cc}^{++} observed by LHCb!

PRL 121, 162002(2018)

$$3621.24 \pm 0.65 \,(\text{stat}) \pm 0.31 \,(\text{syst}) \,\text{MeV}/c^2$$

Mass is consistent with theoretical predictions (Marek Karliner and Jonathan L. Rosner, PRD 90, 094007(2014))

SELEX claimed to observe $\Xi_{cc}^+(ccd)$ in $\Xi_{cc}^+ \to \Lambda_c^+ K^- \pi^+$ and $pD^+ K^-$ decays Mass: 3518.7 ± 1.7 MeV PRL 89 (2002) 112001, PLB 628 (2005) 18

Where is the isospin partner Ξ_{cc}^{+} ?

Not confirmed by FOCUS, BaBar, Belle and LHCb in much larger Λ_c^+ samples

Sci. China-Phys. Mech. Astron. 63, 221062 (2020)

Charm Baryons: future possible developments and advances

Next decade evolution in conventional charm baryons (LHCb & Belle II):

- (1) **Determination of J^P quantum numbers**: in an amplitude analysis of corresponding b-hadron decays or through the study of decay angle distributions;
- (2) One should **study the predicted (expected) levels and their decay modes** to test theoretical models... sometimes in searching for the classical "simple" levels one can observe something unexpected;
- (3) Search for (new) excited states decaying with ss-bar pair popping (e.g. $\Lambda_c^{**+} \rightarrow D_s^+ \Lambda$) PRD 76, 051102 (2007)
- (4) Confirmation (Belle II) of double charm baryons Ξ_{cc}^{++} and search for its new decay modes important to collect as much as possible Ξ_{cc} for the search for excited states $\Xi_{cc}^* \to \Xi_{cc} \pi(\pi)$; Search for Ξ_{cc}^{+}
- (5) Weak decays of ground states is important in determination of J^P of light baryons;
- (6) Study of production properties of conventional (&exotic?) **charm baryons in PbPb collisions** (LHC) important for better understanding of its structure and also in test of the models of QGP.

Exotic Charm Baryons: future possible developments and advances

Next decade evolution in **exotic** charm baryons:

- (1) We await for the confirmation of the observations, especially of exotic states like pentaquarks. Particular these confirmations have almost equal importance as the observations itself. Also search for (new?) P_c in $\Lambda_b \rightarrow \chi_{c1}$ pK-/ $\psi(2S)$ pK-.
- (2) Test $\Sigma^{(*)+}$ $D^{(*)0}$ thresholds at Belle II ? $(\pi^0 \text{ reconstruction } \Sigma_c^+ \to \Lambda_c^+ \pi^0)$
- (3) Search for charm strange pentaquark $P_{cs} \to J/\psi \Lambda$ The base for it is already exists: new decay modes found $\Xi_b^- \to J/\psi \Lambda K$ - (LHCb) and $\Lambda_b \to J/\psi \Lambda \phi$ (CMS).

Phys. Lett. B 772 (2017) 265-273

Phys. Lett. B 802 (2020) 135203

Beauty Baryons: today's landscape

Ground states discovered by UA1, CDF, D0, but their excitations observed by LHCb, 2 of them by CMS

State	Quarks	Decay mode	Mass, MeV	Observation (with links)
Ξ_{cc}^{++}	исс	$\Lambda_c^+ K^- \pi^+ \pi^+ $ $\Xi_c^+ \pi^+$	3620.6 ± 1.5 3621.40 ± 0.72	LHCb, 2017, 13 TeV LHCb, 2018, 13 TeV
$\Lambda_b(5912)$ $\Lambda_b(5920)$	u d b	$\Lambda_b \pi^+ \pi^-$	5912.20 ± 0.21 5919.92 ± 0.19	LHCb, 2012, 7 TeV CMS, 2020, 13 TeV
$\Lambda_b(6146)$ $\Lambda_b(6152)$	и d b	$\Lambda_b \pi^+ \pi^-$	6146.17 ± 0.43 6152.51 ± 0.37	LHCb, 2019, 7, 8, 13 TeV CMS, 2020, 13 TeV
$\Lambda_b^{**?0}$	u d b	$\Lambda_b \pi^+ \pi^-$	6073 ± 5 6072.3 ± 3.0	CMS, 2020, 13 TeV LHCb, 2020, 7, 8, 13 TeV
$\Sigma_b(6097)^- \\ \Sigma_b(6097)^+$	d d b u u b	$\Lambda_b\pi^- \ \Lambda_b\pi^+$	6098.0 ± 1.8 6095.8 ± 1.7	LHCb, 2018, 7, 8 TeV
$\Xi_b'(5935)^-$ $\Xi_b'(5955)^-$	d s b	$\Xi_b^0\pi^-$	5935.02 ± 0.05 5955.33 ± 0.13	LHCb, 2015, 7, 8 TeV
$\Xi_b(5945)^0$	u s b	$\Xi_b^-\pi^+$	5951.4 ± 1.2 5952.2 ± 0.9	CMS, 2012, 7 TeV LHCb, 2016, 7, 8 TeV
$\Xi_b(6227)$	u s b	$\Xi_b^0\pi^- \ \Lambda_b K^-$	6226.9 ± 2.0	LHCb, 2018, 7, 8, 13 TeV

Beauty Baryons: selected recent results

Search for analogous to new narrow excited Ω_c^0 states in beauty sector: charm sector continuously motivates beauty.

LHCb reports 4 new narrow states decaying into Ξ_b^0 K-, consistent with P-wave excitations

Beauty Baryons: selected recent results

Phys. Lett. B 803 (2020) 135345

2020 hot beauty baryon topic:

Observation by LHCb and CMS of 3 new excited Λ_b states, broad one is probably 2S state and two narrow are candidates for 1D doublet.

JHEP 06 (2020) 136

Beauty Baryons: future possible developments and advances

Next decade possible evolution in conventional beauty baryons (LHC):

- (1) **Determination of J^P quantum numbers** through the study of decay angle distributions;
- (2) One should study the **predicted** (**expected**) **levels and their decay modes** to test theoretical models... sometimes in searching for the classical "simple" levels one can observe something unexpected;
- (3) Search for Ξ_{bc} , Ξ_{bb} and their excited states.

First search in D⁰ pK- by LHCb <u>arXiv:2009.02481</u>. Possible future modes are: $\Xi_{bc}^{0} \to \Xi_{b}^{-} \pi + / J/\psi \; \Xi_{c} / B^{0} \; \Lambda / \Lambda_{b} \; K^{0}_{s}$ (LHCb but in principle reachable in ATLAS, CMS), D⁰ $\Lambda / \Lambda_{c}^{+} \; K - / \; \Xi_{c} \; \pi / \; \Xi_{cc} \; \pi \; (LHCb)$

- (4) Weak decays of ground states is important in determination of J^P of charm baryons;
- (5) Study of production properties of conventional (&exotic?) beauty baryons in PbPb collisions (LHC) important for better understanding of its structure and also in test of the models of QGP.
- (6) Search for exotic beauty (di)baryons: Marek Karliner, Jonathan Rosner -- check $B_c p / B_c \pi / \Upsilon p / \Upsilon \pi$ modes in the vicinity of $\Sigma_c B^* / \Sigma_b D^* / \Lambda_b$ -bar $\Sigma_c / \Sigma_b \Lambda_b$ -bar

Summary

- Many conventional charm and beauty baryon states observed by LHCb await for their confirmation by Belle II, ATLAS and CMS
- Searches for missing excited conventional heavy baryon states and its new decay modes will be continued and also searches for double heavy baryons Ξ_{cc}^{+} and $\Xi_{bc}^{+/0}$ will be performed
- P_c pentaquarks await for their confirmation by ATLAS and CMS. (It is not so clear whether Belle II can do it

 - search for P_c in e+e- cc-bar continuum production)
- New thresholds like heavy meson- heavy baryon and heavy baryon heavy baryon should be tested in different decay modes.

Good news for heavy hadrons aficionados - very exciting next 10 years ahead

Backup slides

CMS: Study of $B^+ \rightarrow J/\psi \Lambda p$

Simulation reweighting according to the observed structure in Λp

A model-independent approach that accounts for the contribution from known K*'s with spins up to 4 in the Λp system improves the agreement with data significantly!

Compatibility with data (incompatibility $< 2.8 \sigma$ including syst.) eliminating the need for exotic resonances in this 3-body decay