

- Recent CALICE results on hadronic shower analysis are reported in the combined CALICE/G4 EUDET Memo-2010-15 http://www.eudet.org/e26/e28/
- as well as in several CALICE internal notes (for CALICE members) <u>https://twiki.cern.ch/twiki/bin/view/CALICE/CaliceAnalysisNotes</u>
- In the following we present
 - CALICE comments to changes in various G4 releases
 - CALICE wish list to G4

G4 improvements: visible energy

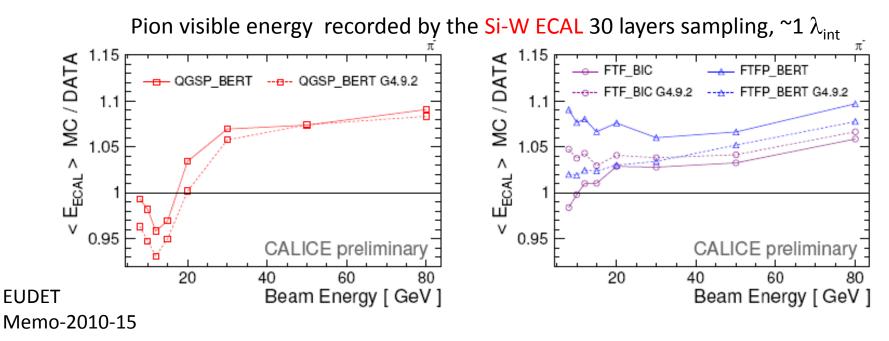
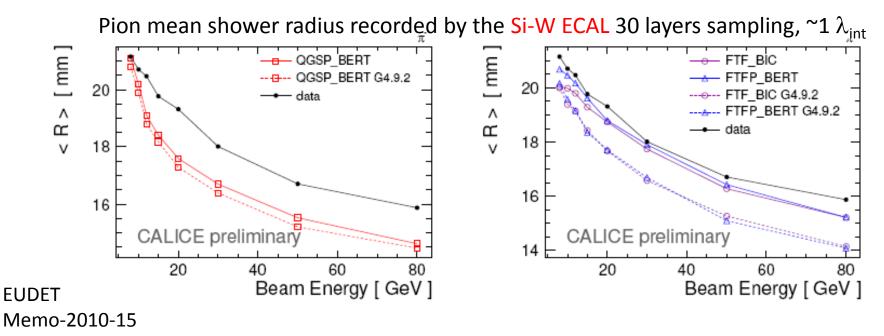
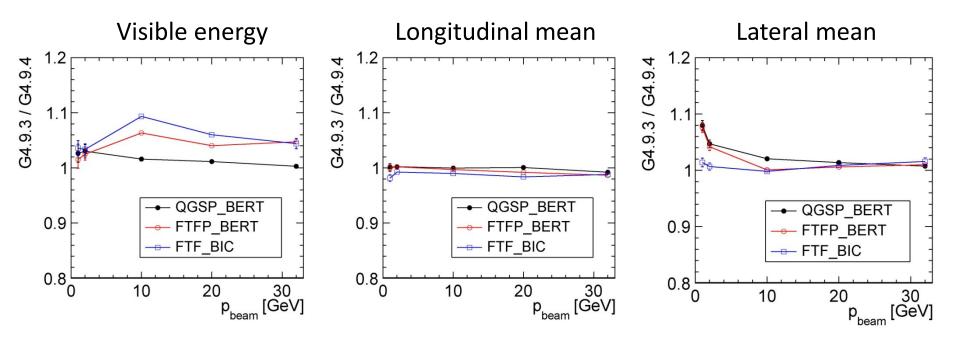



Figure 19: Comparison of Geant4 version 9.3 (solid lines) and version 9.2 (dashed lines) for the total visible energy in ECAL as a function of beam energy, on the left for the QGS-based physics lists and on the right for the FTF-based physics lists.

Improvements in the energy dependence of FTF_BERT, while significant Edependence in FTF_BIC

The absolute scale is strongly dependent on calibration and digi procedure.
14-16 Sept 2011
Erika Garutti - CALICE meeting - Heidelberg
2

G4 improvements: shower shape Calorimeter for ILC

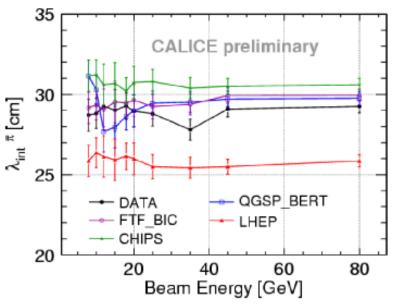


- Figure 20: Comparison of Geant4 version 9.3 (solid lines) and version 9.2 (dashed lines) for the first moment of the radial shower profile in ECAL as a function of beam energy, on the left for the QGS-based physics lists and on the right for the FTF-based physics lists.
- Significant improvement of the FTF models
- \rightarrow G4.9.4 needs to be checked soon

→ changes in phys. lists could be also confirmed by G4 group with basic CALICE geo.


Pion simulation in the Scint-Fe HCAL 38 layers sampling, ~5.3 λ_{int}

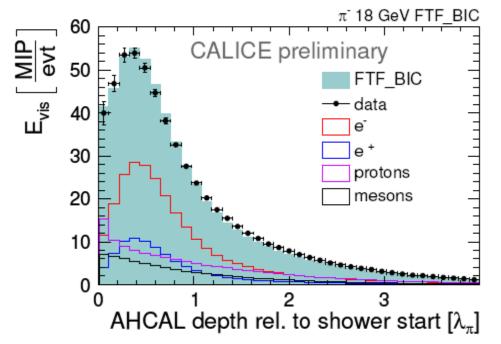
FTF: decrease in visible energy by 5-8%BERT: decrease of shower radius (affects low energies)Longitudinal shower mean is unchanged



Pion point of first hard interaction recorded by the Scint-Fe HCAL 38 layers sampling, ~5.3 λ_{int}

Calorimeter for ILC

Distribution of the shower starting position in QGSP_BERT physics list (filled histogram) and in data (filled circles) for 45 GeV pions.



Extracted values for the interaction length in cm from data and MC models

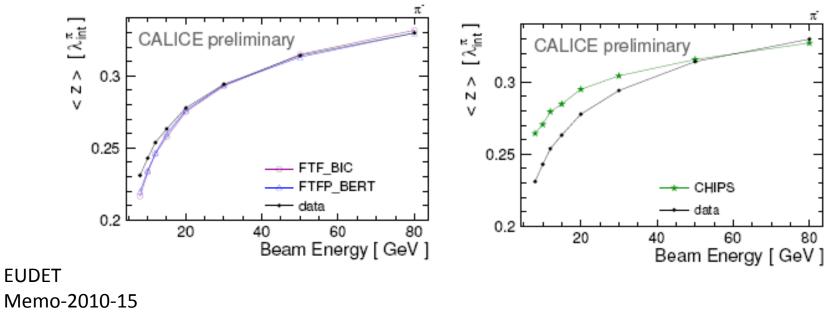
- Extract λ_{int} with exponential fit (left plot) to data and simulation
- Cross section from most phys. lists agrees with data
- CHIPS (G4.9.3) has larger λ_{int} than data by more than the sys. error

CHIPS uses different cross-section, to be clarified (which one is right?)
 14-16 Sept 2011
 Erika Garutti - CALICE meeting - Heidelberg

CALLOS How to release CALICE data for G4?

- CALICE plans to release a set of calibrated data, for use in G4 tuning
- Suggestions are welcome on the data format and treatment

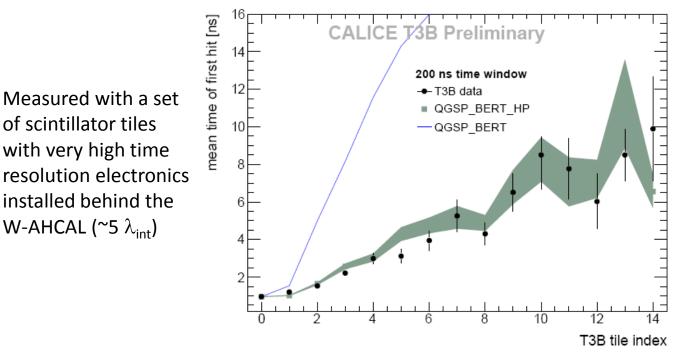
IDEA: visible energy per layer calibrated to GeV, vs layer in units of X_0 and λ_{int} for various beam energies


Options:

- with or without MC calibration = data / MC_digi * MC_true ?
- Data shown from calorimeter start or from first interaction point?

Usual analysis constraint: shower start in first 5 AHCAL layers

- → Implies containment in minimum 4.8 λ_{int}
- We would like to discuss these options with G4 experts



- shower longitudinal mean and shower longitudinal spread in units of λ_{int}
- Due to analysis cuts this is the truncated mean from 0 to 4.8-5.3 λ_{int} → How well can G4 reproduce this with CALICE-basic geometry?
- limited dimension of prototype influences the transverse direction as well

Time structure of hadron shower

CALICE is investigating the 4th dimension of the hadronic shower

Figure 8. Mean time of first hit for 10 GeV π^- as a function of radial distance from the shower core (a tile index of 10 corresponds to approximately 30 cm). The data are compared with simulations using QGSP_BERT and QGSP_BERT_HP. The error bars and the width of the area in the case of QGSP_BERT_HP simulations show the statistical error, while for QGSP_BERT the errors are omitted for clarity.

HP package needed to reproduce shower time structure in tungsten

Does it also match the energy response and spatial profile? We will very soon be able to report on this. 14-16 Sept 2011

CALICE wish list for G4

- Implement CALICE-like geometry in the check plots for new releases !!!
- Prepare for the imminent comparison Fe .vs. W with CALICE data
 HP package, provisionally looks promising in CALICE at least for W
- Continue to improve CHIPS (fix cross section, lower visible energy, too long showers)
- Radial shower shape → indications from CALICE: too narrow in all lists