Problems in Hadronic Interfaces

Dennis Wright Geant4 Collaboration Meeting 20 September 2011

Outline

- Migration to Integer Z and A
- Interfaces between cascade and string models
- Interfaces between precompound and cascade models
- Smooth model transition
- Automatic documentation

Integer Z and A

- Two years ago, we adopted the convention that all hadronic interfaces should use integer values of Z and A to represent nuclei and cross sections
 - Hadronic cross sections have implemented in this way
 - Migration of G4Nucleus underway
 - Anything else left to be done?

Intefaces Between Cascade and String Models

- FTF-Bertini
 - Uses Propagate() interface and new Bertini method reScatter()
 - Problems:
 - FTF may generate particle types that Bertini doesn't recognize
 - it used to be that once FTF passed its fragments to Bertini, residual nucleus is too high in energy to decay by precompund model – this is now fixed, but how does validation look?
- FTF-Binary
 - same problem with highly excited residual same fix possible?
 - Binary only handles pions up to 1.5 GeV
- QGS-Binary
- QGS-Bertini

Intefaces Between Precompound and Cascade Models

- Precompound-Bertini interface seems to work well below 60 MeV
- Poor agreement with data above 60 MeV
- Why? Should be OK up to ~170 MeV
 - fix of Bertini "do-nothing" output may have fixed this
 - re-check agreement with data

How to Make Smooth Transition Between Hadronic Models

- Current method: linear merge in energy
 - throw a random number over energy range where models overlap
- Not the best approach
 - No physical basis, range of energy blending treated as a parameter
 - Can lead to discontinuities in other observables (angular distribution, energy desposit, etc.)
- What other approaches can we take?
 - Impact parameter
 - Formation time
 - Non-linear energy merge
 - Do precompound-to-cascade and cascade-to-string interfaces help?

Automatic Documentation

- Automatic physics list documentation implemented
 - See Physics List in plenary session 8
 - currently requires user to set two environment variables specifying:
 - physics list name
 - location of directory where all html description files are kept
- Description() method generates html file for each component – each code author must implement
- G4HadronicProcessStore currently does most of the work
 - Method DumpHtml() writes physics list file
 - Method PrintHtml() collects descriptions of all processes, mosdels and cross sections for a given particle type
- User must run the physics list in an application to get html file