
Hints for Writing Thread-Safe Code

Gene Cooperman
College of Computer and Information Science

Northeastern University, Boston, USA
gene@ccs.neu.edu

Threads Overview

• CPU speed, performance of one core no longer rising with Moore’s Law

• Number of cores per CPU chip still rising approximately with Moore’s Law: doubling
every two years

• High-end “server-class’ PCs (still under $10,000) typically have four CPUs on a
motherboard.

• As of this writing, “google: Multi-core processor” reports: 6 cores per CPU chip
commonly available: e.g. AMD Phenom II X6, Intel Core i7 Extreme Edition 980X

• Total: 24 cores on a PC,and rising

Scaling to Many Threads

• To gain full efficiency on 24 cores, you must haveat least 24 threads today (in one
process, or spread among multiple processes).

• Multi-processing: Multiple processes can also share data by using the Linux system call
fork (using copy-on-write). However, a single write to a data page forces aprivate copy
of that page. More cores places more pressure on cache and memory bus.

• One can fork a child process after the parent process initializes, to encourage maximal
sharing of data. But there are problems:

1. Some programs use lazy initialization.

2. Many objects have both read-only fields(after initialization) and read-write fields.
Examples of read-write fields occur due to caching of previous values, temporary
intermediate values, re-use of objects to avoid allocation/freeing, etc.). A single
write to a page can “poison” the performance by forcing a copy of thatpage.

Thread-safety

GOAL: Replace each process by a thread within a single process.

• Default for threads: All global data is shared.

• C keyword (also valid in GNU C++): thread
Any data declared with thread is thread-local (non-shared).

• Keywords supported by existing compilers:
GNU and Intel: thread
Microsoft C++: declspec(thread)

• For C++, thread-local keyword will be standardized as:
thread local (upcoming “C++0x” standard)

• In C/C++, thread / thread local is permitted only for static data —not for fields
of dynamically created objects. Geant4MT makes further transformations to guarantee
dynamic data created by one thread isthread-private (a generalization of thread-local).

• Geant4MT transforms Geant4 so that most data isthread-private: data is thread-private
if only one thread accesses that data.

Thread-safety (cont.)

Definition: A program routine isthread-safe if two threads can execute the same function
at the same time, and the result is the same as if they had executed that function sequentially
(one thread at a time).

Definition: A program ispleasingly parallel if all routines are thread-safe. (When possible,
we would like all program routines to be pleasingly parallel.)

“Hello, world.” for Thread-Safe Code

// gcc -lpthread thisProgram.c; OR: g++ -lpthread thisProgram.cpp
#include <stdio.h>
#include <pthread.h>

#ifndef NUM_THREADS
define NUM_THREADS 5
#endif

typedef struct { int thread_id; } thread_args_t;
__thread int thread_id = -1; /* -1 means uninitialized */

void *thread_start(void *args) {
thread_args_t *thread_args = (thread_args_t *)args;
thread_id = thread_args->thread_id;
printf("My thread id is: %d\n", thread_id);
return NULL;

}

“Hello, world.” for Thread-Safe Code (cont.)

void *thread_start(void *);

int main() {
pthread_t thread[NUM_THREADS];
thread_args_t thread_args[NUM_THREADS];
int i;

for (i = 0; i < NUM_THREADS; i++) {
thread_args[i].thread_id = i;
pthread_create(&(thread[i]), NULL, thread_start, &(thread_args[i]));

}

for (i = 0; i < NUM_THREADS; i++) { /* Wait for threads to finish. */
pthread_join(thread[i], NULL);

}

return 0;
}

Three Classic Synchronization Techniques

1. pthread mutex lock(), pthread mutex unlock() : critical section executed by at
most one thread at a time

2. pthread rwlock rdlock(), pthread rwlock wrlock : eithermultiple readers or else
one writer allowed in critical section, withwriter priority.

3. producer-consumer : See
http://en.wikipedia.org/wiki/Producer-consumer_problem#Using_semaphores

for an example with working code.

http://en.wikipedia.org/wiki/Producer-consumer_problem#Using_semaphores

Debugging

gcc -g -O0 -lpthread thisProgram.c
gdb ./a.out
(gdb) break 31
(gdb) run
Starting program: /home/gene/group/talks/geant4-thread-safe-11/a.out

[New Thread 0xb75a96d0 (LWP 12897)]
[New Thread 0xb75a8b70 (LWP 12906)]
My thread id is: 0
[New Thread 0xb6da7b70 (LWP 12907)]
My thread id is: 1
[Thread 0xb75a8b70 (LWP 12906) exited]
[Thread 0xb6da7b70 (LWP 12907) exited]
...

Breakpoint 1, main () at example.c:31
31 for (i = 0; i < NUM_THREADS; i++) { /* Wait for threads to finish. */
(gdb) info threads
* 1 Thread 0xb75a96d0 (LWP 12897) main () at example.c:31

Debugging

(gdb) set scheduler-locking on
(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /home/gene/group/talks/geant4-thread-safe-11/a.out
[New Thread 0xb76316d0 (LWP 12971)]
[New Thread 0xb7630b70 (LWP 12972)]
...

Breakpoint 1, main () at example.c:31
31 for (i = 0; i < NUM_THREADS; i++) { /* Wait for threads to finish. */
(gdb) info threads
6 Thread 0xb562cb70 (LWP 12976) 0xffffe430 in __kernel_vsyscall ()
5 Thread 0xb5e2db70 (LWP 12975) 0xffffe430 in __kernel_vsyscall ()
4 Thread 0xb662eb70 (LWP 12974) 0xffffe430 in __kernel_vsyscall ()
3 Thread 0xb6e2fb70 (LWP 12973) 0xffffe430 in __kernel_vsyscall ()
2 Thread 0xb7630b70 (LWP 12972) 0xb7708658 in clone () ...

* 1 Thread 0xb76316d0 (LWP 12971) main () at example.c:31
(gdb)

Examples of Code that is not Thread-Safe

1. Shared object with writeable field:

2. Example (race condition): Field of object that caches last computational result for re-
use.

3. Example (atomicity): Code that keeps count of number of uses. FIX: Must replace by
atomic increment: In GNU gcc-4.1 and later, use: GNUsync fetch and add()

4. Dangers of a global variable that is writeable.
Depending on the code, some possible issues encountered are:

(a) Race condition:Thread A and thread B race to write to a variable. Whoever writes
last wins. Later results depend on who wrote last.

(b) Lack of bit compatibility: Thread A atomically reads a global variable, adds
a valuex and writes it back. Thread B alsoatomically adds the valuey to the
same global variable. Hence, we either addx + y or y + x to the global variable.
Unfortunately, on real computers, addition is not commutative in the least significant
bits. The least significant bits are no longer reproducible.

Dangers of a global variable that is writeable.

4. Dangers of a global variable that is writeable . . . (cont.)

(c) Performance bug 1: High-end motherboards support two or four CPU chips, but
without cache on the motherboard. A write by one thread to a global variable
must propagate to all CPU chips. This off-chip communication isslow. In one
example that we encountered, verbose output was turned off for efficiency. But a
“harmless” write to an associated shared global variable had notbeen turned off.
This performance bug prevented scalability of Geant4MT beyond about 16 cores.

(d) Performance bug 2: Every malloc package must include some variation on a
central lock to handle the case when Thread A allocates memory and Thread B frees
that memory. This is inherently non-scalable. Even the best of the newer malloc
packages could not handle this.
Solution: In most instances, when Thread A of Geant4MT allocates memory,
Thread A is guaranteed to free it. For those instances, we provide athread-private
malloc arena (memory pool) for each thread of Geant4MT. This avoids the need for
a central lock. We call this TPMalloc (Thread-Private Malloc).
See: Xin Dong, Gene Cooperman and John Apostolakis, “Multithreaded Geant4:
Semi-automatic Transformation into Scalable Thread-Parallel Software”, Proc. of
Euro-Par 2010 — Parallel Processing, Springer-Verlag, Lecture Notes in Computer
Science6272, Springer, 2010, pp. 287–303

Combining Geant4MT with Sequential Software

Problems to watch out for:

• User-defined Hits, SteppingAction, Scorer, etc. may use code that is not thread-safe.

• Analysis packages are usually not multi-threaded. Multiple threads must hand off I/O
for analysis to sequential code.

Example: When using Root, the information computed by an event is passedto a
framework. Root processes that information while Geant4 simulates the next event.
It is the responsibility of the framework to free the memory allocatedby that first
event. In this context, Geant4MT would require additional adaptation, such as creating a
special “framework thread”. That framework thread would be responsible for passing the
information of an event to Root, and later freeing the memory associated with that event.

Random Number Generators and Reproducibility

1. With multiple threads, each thread uses a separate random number generator.

2. To recover determinism (reproducibility), one must associate aunique random seed with
each event number.

3. Bit compatibility (but see caveat below): As the number of threads increases each event
number continues to produce the same results.

NOTE: For performance reasons, Geant4 will re-use previously computed results from an
earlier event. In Geant4MT, a given thread “knows” only about earlier events computed by
the same thread. (This is due to use ofthread keyword: thread-local data.) So, in order
to guarantee full bit compatibility (including the least significant bits) between successive
runs, one must provide a static thread schedule: each event number is associated not only
with a unique random seed, butalso with a unique thread. Thus, each event number always
sees the same history of earlier events by that thread.

Tools from Geant4MT for Verifying Correctness

WARNING: Intended for Geant4MT developers (primarily for experts — please talk to us
if you would like to use these tools)

Verifying comparable results between Geant4 and Geant4MT:

1. Bisimulation between Geant4 and Geant4MT with one thread

2. Geant4MT with one thread versus many threads (bit compatibility by design when using
Geant4MT’s static scheduling of threads)

(See talk by Xin Dong from Tuesday for details.)

Tools from Geant4MT for Verifying Correctness (cont.)

Verifying Geant4MT assumptions of read-only data after initialization: comparable
results between Geant4 and Geant4MT

1. Standard policy: Remove write permission from memory pages (RAM) that is assumed
read-only. If there is an attempt to write to read-only memory, Geant4MT will halt and
report the instruction of code and the data address for the violation.

2. Production run policy: For added robustness during a production run, an alternative
policy is possible. If a read-only memory violation is detected,halt all other threads,
and temporarily grant write permission to the corresponding read-only memory. Then
redo the corresponding event. Finally, again remove write permission and restart other
threads at the beginning of their current event.

(See talk by Xin Dong from Tuesday for details.)

