Validation of Geant4 hadronic physics with LHC data

J. Apostolakis, A. Dotti, A. Ribon CERN PH/SFT

Geant4 Collaboration meeting, SLAC, 20-Sep-2011

Outline

- Energy response
- Energy resolution
- Longitudinal shower profile
- Lateral shower profile
- Antiprotons
- Summary & conclusions

Energy response

- Very important for the jet energy scale
- Geant4 QGSP_BERT, FTFP_BERT, and QGSP_FTFP_BERT describe the energy response in calorimeters reasonably well, within few %
- For CMS, **QGSP_FTFP_BERT** (default in 2011) gives the best agreement with test-beam data, and it is smoother than QGSP_BERT (default until 2010)
- For ATLAS, **QGSP_BERT** (default) gives the best agreement with test-beam data, with **few % higher response** especially in the **TileCal** . Fritiof-based variants (QGSP_FTFP_BERT and FTFP_BERT) are smoother, but have an even higher response

CMS E/p collision data: ECAL

Measure energy in a 7x7 crystal matrix around the impact point.

CMS E/p collision data: HCAL

Measure energy in a 3x3 matrix around the impact point.

CMS E/p collision data: ECAL+HCAL

CMS E/p collision data

ATLAS E/p collision data

ATLAS collision data: inclusive jets

ATLAS collision data

 π + and proton look similar, whereas π - and antiproton look different

ATLAS collision data

Use differences to avoid background issues: π + - π - and π - - <u>p</u>

 π + and π - are different

QGSP_BERT does poorly with p

Simplified calorimeter study: $\pi + /\pi$ -

Difference between π + and π - is better modeled by QGSP_BERT and FTFP_BERT

CMS combined test-beam G4 9.4

CMS HCAL test-beam G4 9.4

CMS combined test-beam G4 9.4 : MIP fraction in ECAL

ATLAS TileCal test-beam energy response, G4 9.4

Energy resolution

- Very important for di-jet invariant masses
- All Geant4 physics lists of interest for LHC (QGSP_BERT, FTFP_BERT, QGSP_FTFP_BERT) are producing too optimistic (narrower) energy resolutions, by ~ 10% with respect to test-beam data, for both ATLAS and CMS
- Recent versions of FTFP_BERT are producing energy resolutions in better agreement with ATLAS HEC (Cu-LAr) test beam...

CMS combined test-beam: G4 9.4

CMS HCAL test-beam, G4 9.4

Calo Resolution (MCidealMIP)

ATLAS TileCal test-beam energy resolution, G4 9.4

ATLAS HEC test-beam pion energy resolution, G4 9.4

1 10141 10

Longitudinal shower profile

- Important for jet corrections and particle identification
- QGSP_BERT longitudinal pion shower profiles are ~10% shorter than test-beam data
- FTFP_BERT longitudinal pion shower profiles are
 ~ 10% longer than test-beam data
- Proton shower longitudinal profiles are not so well simulated: QGSP_BERT is shorter by ≥ 20%, FTFP_BERT is longer by ≤ 20% than test-beam data
- Progress in the past has been obtained thanks to better modeling of quasi-elastic. Further improvements on longitudinal shower profiles will likely need refinement in the diffraction, especially for QGS

ATLAS TileCal test-beam pion longitudinal shower profile, G4 9.4

ATLAS HEC test-beam pion longitudinal shower profile, G4 9.4

EBEAM [GeV]

ATLAS TileCal test-beam proton longitudinal shower profile, G4 9.4

Lateral shower profile

- Relevant for isolation and separations between jets
- Results from LHC test-beam setup (ATLAS TileCal) and CALICE show that all Geant4 physics lists are producing pion and proton showers that are narrower than data by 10 ÷ 20 %
- Improvements on this observable is very important for highly granular calorimeters under design for ILC, but likely not critical for the coarse LHC calorimeters
- Electromagnetic showers: CALICE and ATLAS have recently observed that Geant4 electromagnetic showers are a few % narrower than data. This is a critical issue (present also in Geant3). Work is undergoing to improve it, with already some partial promising results...

ATLAS TileCal test-beam pion lateral shower shape, G4 9.4

ATLAS TileCal test-beam proton lateral shower shape, G4 9.4

ATLAS EM lateral shape

Kaons and antiprotons

- Kaons and antiprotons are non negligible jet components
- For LHCb, the modeling of hadronics interactions (both cross section and final state) in thin layers is very important including Ks , Λ . The differences in interactions for particle and antiparticles, particularly for K±, are also vital
- Much less data available to test these particles
- For kaons, CHIPS provides the best current simulation in Geant4, available in QGSP_BERT_CHIPS and in all Fritiofbased physics lists (FTFP_BERT, QGSP_FTFP_BERT,...)
- For antiprotons, Fritiof-based physics lists provide the best simulation currently available in Geant4

ATLAS hadronic interactions in the inner detector

a con anome

ATLAS collision data

Use differences to avoid background issues: π + - π - and π - - <u>p</u>

 π + and π - are different

QGSP_BERT does poorly with p

Validation summary table for G4 9.4.p01

Table made by A. Dotti

	Response	Resolution	Smoothness	Lateral Shape	Longitudinal Shape @10λ	Notes
QGSP_BERT	+(1-3)%	-(10-5)%	Bad	-(20-10)%	π: -10% p: -20%	anti-nucleons, hyperons via LHEP
FTFP_BERT	+(3-5)%	-(7-3)%	Good	π: -(20-10)% p: -(10-3)%	π: +10% p: +(10-20)%	anti-nucleons, hyperons via CHIPS(*)
CHIPS	+(10-5)%	-(20-10)%	Very Good	π: -(10-3)% p: -(20-10)%	π: -10% p: -20%	native anti- nucleons, hyperons
FTF_BIC(**)	+(3-5)%	-(6-2)%	Bad	-	π:+10%	Implements re-scattering at high E

Summary & conclusions

- Up to now, overall satisfactory behavior of Geant4 simulations with respect to LHC collision data. Test-beams data are still providing more stringent validation for Geant4 simulations, especially for hadronic showers
- Need to keep a balance between stability and new features/improvements between Geant4 releases
- Focus on a **few physics lists**, relying on a **few key models**
- Energy response and energy resolution are the two most important observables for LHC physics, followed by longitudinal and lateral shower profiles. For ILC/CALICE the top observable is the lateral shower profile
- Growing attention to "other particles", besides the traditional pions and protons

Thanks

- S. Banerjee , S. Piperov (CMS)
- Z. Marshall, P. Clark, D. Froidevau (ATLAS)