Electron transport : recent results

M.Maire on behalf of EM group 16th Geant4 Workshop, Slac (Californie) 19-23 September 2011

Electron transport : main ingredients

- Stopping power and range
- eLoss fluctuations
- Multiple Coulomb scattering
 - Angular distribution (opt 0)

+

Urban93 → Urban95

- Boundary crossing algorithm (opt 3)
- Delta-rays generation
- Bremsstrhalung generation

- TestEm12 : dose point kernel
- TestEm11 : pencil beam
- TestEm5 : thin target
- electronScattering
- FanoCavity & FanoCavity2

TestEm12 : Dose Point Kernel Distribution

- Energy deposited in spherical shells
- Normalized distribution
- No data. EGSnrc comparison (perrot@clermont.in2p3.fr)

TestEm12 : Geant4 vs EGSnrc

TestEm12 : Urban95 vs Urban93

TestEm12 : option3 vs option0

TestEm11 : Pencil Beam Distribution

- Energy deposited in slices
- Normalized distribution
- Sandia data
- EGSnrc comparison (perrot@clermont.in2p3.fr)

TestEm11 : Geant4 vs EGSnrc

TestEm5 : Thin layer

- e-1 MeV in 530 um Silicon
- Total energy deposit
- Berger data

Electron Scattering experiment

- Thin target
- electron distribution
- Data : Faddegon et al.
- EGSnrc comparison (perrot@clermont.in2p3.fr)

No foil		
Au 1	Z = 79	t = 16.2 um = 31.2 mg/cm2
Ti 4	Z = 22	t =123 um = 54.6 mg/cm2
Au 3	Z = 79	t = 48.5 um = 93.7 mg/cm2
Al 2	Z = 13	t = 518.5 um = 140 mg/cm2
C 1	Z = 6	t = 2.505 mm = 546 mg/cm2
Be 1	Z = 4	t = 5.005 mm = 926 mg/cm2

electronScattering : Geant4 vs EGSnrc

electronScattering : Geant4 vs EGSnrc

electronScattering : msc options ? Cuts ?

electronScattering : renormalisation

Fano Cavity Test

Materials 1 and 2 : same A, but different density ρ 1 and ρ 2 $\Rightarrow \left(\frac{1}{\rho}\frac{dE}{dx}\right) = \left(\frac{1}{\rho}\frac{dE}{dx}\right)_{1}$

beam energy fluence : $\Phi = \frac{nE_{\gamma}}{S_1}$ dose in material 2 : *D* energy transfert coefficient : $\mu_{tr}(E_{\gamma}) = \sigma_{tot}(E_{\gamma}) \frac{\langle T \rangle}{E_{\gamma}}$ $\langle T \rangle$ is the mean kinetic energy of emited e^{-1}

Under charged particle equilibrium condition :

$$\frac{D}{\Phi(E_{\gamma})} = \left(\frac{\mu_{tr}(E_{\gamma})}{\rho}\right)_{1} = \text{const}$$

i.e. independent of the tracking parameters of the simulation

Fano cavity : 9.4-ref-08

FanoCavity test case - Geant4-09-04-ref-07 (msc95)

Fano cavity

FanoCavity test case - msc93 vs msc95

FanoCavity test case - single scattering

Fano Cavity 2

Fano cavity 2 : 9.4-ref-08

FanoCavity2 test case - Geant4-09-04-ref-07 (msc95)

Fano cavity 2

FanoCavity2 test case - msc93 vs msc95

