Simplified Calorimeter Validation

A. Dotti 16th Geant4 Collaboration Meeting

Introduction

 For LHC era requirements were collected on expected performances of Geant4 (<u>CERN-</u> <u>LCGAPP-2004-02</u>)

Calorimeters set the most stringent requirements

Observables: Response, Resolution, Shower Shapes

Recently added: Smoothness, anti-protons and K cross-sections

— Readiness of G4 at LHC startup: <u>CERN-LCGAPP-2010-02</u>

Simplified Calorimeter

- Geant4 Application with simplified geometry of different calorimeter: all LHC ones, Zeus, one CALICE
 - ''Sandwich'' geometry, no read-out effects (only Birks')
- See last year workshop: Parallel 6-A

- No technical details here (see backup)

Only showing plots with data, check last year presentations for additional material

Response: Fe/Sci

Response: Cu/LAr

Resolution: Fe/Sci

Resolution: Cu/LAr

Resolution

Resolution as function of first interaction multiplicity

Compensating calorimeter

Longitudinal shape

Full TileCal Test-beam simulation! Need to find a way to compare with SimplifiedCalorimeter QGS: shorter, FTF: longer

Diffraction and longitudinal shape

FTF predicts too much traget diffraction, while QGS too little May play important role for longitudinal description Investigating NA22 experiment Quasi-elastic introduction improved QGS: re-evaluate

Radial profile

Low-E neutrons play important role for lateral profile Challenging to compare with data: need CALICE

Test-beam summary (G4 9.4.p01)

	Response	Resolution	Smoothness	Lateral Shape	Longitudinal Shape @10λ	Notes
QGSP_BERT	+(-3)%	-(10-5)%	Bad	-(20-10)%	π: -10% p: -20%	anti-nucleons, hyperons via LHEP
FTFP_BERT	+(3-5)%	-(7-3)%	Good	π: -(20-10)% p: -(10-3)%	π: +10% p: +(10-20)%	anti-nucleons, hyperons via CHIPS(*)
CHIPS	+(10-5)%	-(20-10)%	Very Good	π: -(10-3)% p: -(20-10)%	π: -10% p: -20%	native anti- nucleons, hyperons
FTF_BIC(**)	+(3-5)%	-(6-2)%	Bad	-	π:+10%	Implements re-scattering at high E

(*): Native FTF model under development (**): Much less tested at LHC

Conclusions

- Smoothness issue resolved with FTF based lists
- Response is higher of few %
- FTFP_BERT is higher in 10-20 GeV region w.r.t.
 QGSP_BERT (good since no LEP is used there)
 - However this brings too much up jet-response in ATLAS: (high-E jets are composed of low-E particles!). Same behaviour observed for hadronic tau-decays (private communication)
- Scintillator based calorimeters are challenging: need to further study role neutron elastic scattering
- Resolution is too good (should focus on π^0 production validation)
- Forward physics (q.e., diffraction) needs attention
- Low-E neutrons play an important role for lateral profile

Todos

- Test novel combination of models
 Bertini as re-scattering for FTF
 G4Precompound in Bertini
 G4NeutronRadCapture
- Find data for longitudinal and lateral shower shape validation

Backup

Validation Components

- Geant4 Application performing simulation
 Output ROOT trees and histograms
- Python Application performing analysis, writing results in DB and producing plots

- DIANE application

- Jobs running on distributed resources (batch and GRID)
- CernVM FileSystem used for software distribution
- DRUPAL web application to show results

Privileged user

- Each reference tag is validated with SimplifiedCalorimeter
- A total of ~9 millions events is produced with E from 1 GeV to 500 GeV
- Resources usage:
 - -1300 CPU produce results in ~1 week (need the GRID)
 - Data 200GB of ROOT files
 - Few MB in DataBase