
Follow Up: Processing 
and I/O
Peter van Gemmeren

Some ATLAS Similarities/Differences/Details



Multi Processing/Threading and Memory

• For ATLAS Reconstruction Memory is a tight resource:
• Serial Job uses approx. 4 GB of memory

• Multiprocessing uses Copy on Write to share all common 
memory between processes:

• E.g. geometry, calibration, initial condition…
• But not: Event data, I/O buffer, data loaded after fork

• Reduces memory to approx. 2 GB for each additional process
• More ‘tricks’, Forking after processing 1 event, sharing I/O…

• Can further reduce memory to about 1 GB, but have drawbacks.

• Multi-threading (new-ish for ATLAS) shares all memory
• First tests show < 0.2 GB per additional thread

• Example machine 16 cores, 32 GB: cannot quite run 8 serial 
jobs, MP scales to all cores, but MT will enable full usage even 
with less memory/core or for even more memory hungry 
workflows (e.g. RAWtoALL).



Event Data Structure, Processing

• Very similar for ATLAS

• Reading different data products (A, B, …) for the same or 
different events can be concurrent.

• Reading the same data product for different events is 
serialized:
• typically in ROOT they are stored in the same compression basket 

and reading event N will decompress events N-d to N+e.

• Attention is paid to thread requesting object from next cluster 
while others still processing previous data

• All algorithms on the event have to complete before 
writing, but no enforcement of output ordering.



Storage Opportunities

• Very similar for ATLAS

• Cluster size matters for concurrent [de-]compression

• High-light:
• Read/decompress/deserialize can be different steps

• Do not have to do as 1 function call 

• Reads could be serialized while other parts are run in parallel 

• Framework could do optimal scheduling

• Serialize/compress/write can be different steps 

• Writes could be serialized while other parts are run in parallel 

• This would be also highly benefitial for in memory data 
sharing, but AFAIK is very complex.


