Constraints on I/0O
from HEP Data
Process ing
Dr Chri

Follow Up: Processing
and |/0

Multi Processing/Threading and Memory

/ / / (oal for Multi-C
For ATLAS Reconstruction Memory is a tight resource: B

» Serial Job uses approx. 4 GB of memory

Multiprocessing uses Copy on Write to share all common
memory between processes.
» E.g. geometry, calibration, initial condition...
« But not: Event data, |1/0 buffer, data loaded after fork

Primary motivation was for CPU memory
Amortize memory needs across multiple cores

ions
Some mutable data is also shared

» Reduces memory to approx. 2 GB for each additional process e
* More ‘tricks’, Forking after processing 1 event, sharing |/0... Famescr Conrs o010 >
» Can further reduce memory to about 1 GB, but have drawbacks.

Multi-threading (new-ish for ATLAS) shares all memory
» First tests show < 0.2 GB per additional thread

Example machine 16 cores, 32 GB: cannot quite run 8 serial

jobs, MP scales to all cores, but MT will enable full usage even
with less memory/core or for even more memory hungry
workflows (e.g. RAWtoALL).

Event Data Structure, Processing

 Very similar for ATLAS

» Reading different data products (A, B, ...) for the same or
different events can be concurrent.

« Reading the same data product for different events is
serialized:

 typically in ROOT they are stored in the same compression basket
and reading event N will decompress events N-d to N+e.

« Attention is paid to thread requesting object from next cluster
while others still processing previous data

 All algorithms on the event have to complete before
writing, but no enforcement of output ordering.

Structure of Event Data

Hvent data is not a monolithic structure
Composed of independent data products

Data products can be accessed individually

Memory footprint of data products vary widely

Frameworks schedule algorithms to run when data available
Algorithms needing data only from source typically run first
are only intended for debugging
vent needs to be read for each job

ata products from an Fvent are needed at the same time
eserialization of data products can be done as neede

Algorithms within the Event are allowed to run concurrently
Different data products can be concurrently requested

Framework Constraints on IO [CCE-I0S 8/2020

Concurrent Event Processing

Frameworks process Events concurrently

Algorithms may process Events in different orders
Algorithm A might process Event | then Event 2
Algorithm B might process Event 2 then Event |

ifferent Events may be requested in

ifferent Events may be ready for storage in

CCE-1OS 8/2020

Storage Opportunities

Want to be able to write Events ‘out of order’
‘Write Event data products the moment an Event finishes

Want to be able to read Events ‘out of (rier
ially read Events in the same IOV group even if written out of order

0 be able to read data products ‘out of order’

uetA go gets read for

Eg p d ct B ge t ead for
le

Event | then Event 2
Event 2 then Event |

Would like to be ab
and data products

Stora e O 0rtun1t1es 2

Cc 1mp ecompressing can happen concurrently
For d ata product in different E nts
for dﬂ ent data products within the sameE

n can happen concurrently

ess/write can be different steps
e serialized while other parts are run in parallel

o do concurrent reads/writes of FEvents

 Very similar for ATLAS
 Cluster size matters for concurrent [de-]Jcompression
 High-light:

« Read/decompress/deserialize can be different steps
» Do not have to do as 1 function call
» Reads could be serialized while other parts are run in parallel
* Framework could do optimal scheduling

 Serialize/compress/write can be different steps
» Writes could be serialized while other parts are run in parallel

» This would be also highly benefitial for in memory data
sharing, but AFAIK is very complex.

