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e Balitsky, Fadin, Kuraev, Lipatov (BFKL) resummation

e BFKL vs DGLAP

e Mueller-Navelet jets at LHC

e Mueller-Tang jets at Tevatron and LHC

e Jet gap jet: full NLL calculation (kernel and impact factor)



Searching for BFKL /Saturation effects

BFKL as low-x resummation kernel

Energy (In 1/x)
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DGLAP

non-perturbative region
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Probe resolution (Qz)

BFKL evolution kernel toward small-x (x = x3). Forward emission. DGLAP evolution kernel towards increasing
probe resolution Q? at fixed energy x;. Both necessary to explain the QCD parton densities (including the
small-x region).
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Searching for BFKL /Saturation effects

BFKL is part of global PDF fits

First hint of low-x resummation effects (BFKL dynamics) extracted from Hera data[1710.05935v2 [hep-ph]].
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Gluon NNPDF3.1 PDF. Global fit to Hera data.

The PDFs obtained with small-x resummation using NLO-+NLLx and NNLO+NLLx theory are in much closer agreement with each other at
medium and small x than the corresponding fixed-order NLO and NNLO PDFs. The theoretical uncertainty due to missing higher order
corrections in a NNLO+NLLx resummed calculation is rather less at small x than that of the fixed-order NNLO calculation.

fixed-order calculations have a perturbative instability at small x due to large logarithms that can be cured by resummation.

PDFs uncertainties often dominates the error bands for hadron collisions.
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BFKL approach

High energy limit of QCD

BFKL effects are predicted to dominate in Semi-hard regimes: s > —t > Agcp
Despite Q@ : as(Q%) < 1 whole string of sub-leading diagrams must be resummed if as(Q?) log (&) ~ 1.
1
I
I
I

Radiative corrections of order n to the partonic cross sections

dé ~ a”log" <it) A+ alog"! <it) B+...

The perturbative expansion breaks down when o2 log® s/t ~ a; log s/t :
]
I

e New hierarchy divides the diagrams of the perturbative expansion
Figure: Diagram enhanced by
o (s one power of the large

ag log (*), n=12,... logarithms.

e Leading logarithmic approximation (LL):

—t
e Next-to-leading logarithmic approximation (NLL):
a’log"? (_it) n=12...

Pomeranchuk Th: The color singlet exchange dominates at high energies.
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BFKL approach

BFKL vs DGLAP

Resumming distinct subset of Feynman diagrams to all orders of perturbation theory. (Almost) Complementary
limit of QCD. Overlapping not easy to disentangle.

e DGLAP: resum terms o Iog% > 1. Q = exchanged momentum, )\ = factorization scale.

e BFKL: resum terms o< log =, >> 1. s = center-of-mass energy, —t = Q%

= {n)

" G

e Phase space DGLAP LO e Phase space BFKL LL

ki>ke> Ske| yyp~oxy, NS n > >y
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BFKL approach

BFKL equation

Recursive integral equation in the form of a Green function equation called BFKL equation. The ladder diagrams
are resummed to all order in the Gluon Green function G.

a-k
Kk
G(k, k') = 6°(k — k)+/d£’C OG(LK) - '
k a-k
©
q-K
d(k—k')
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o AOELK) v _ (sae)”
kK, q,Y) = e’ / = v=
G( , K, (, ) . 27” Z 27‘(’[ w—Ost(%”) ‘ —t
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£ 2F (a(n7 v), b(n,v), c, z(k, k’)), Gauss hypergeometric function
n,v X P
|k|_%+”'e’”0, forward limit g — 0.
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Mueller-Navelet Jets

Mueller-Navelet Jets

Mueller Navelet jets as preferred testing ground for BFKL dynamics.
p + p — jet1 + jetr + anything else
Tagged jets far apart in rapidity.
High energy factorization separates the probe dependent jet vertices from
the universal Gluon Green function.
do
dSidb
Convolution in (k, x).
Observables: cross section and azimuthal (de)correlation.

. G- %

%’;’ = (cos(mAgy))

:Va(kJ17XJ17 kl) ® G(kl’ k27 §) ® Vb(kJ27 Xy s k2)

d
Cn(Y) = /dyldy25(y1 +y2 — Y)d?ky, d*ky, cos(m(cy, — b, — W))TZJ:_»
/ /—  BFKL induced decorrelation dominates over DGLAP [C.

/ / Marquet, C.Royon, Phys. Rev. D79 (2009) 034028]
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CMS Analysis

Test of BFKL predictions at /s = 7 TeV for the first moments of the average cosines C,/Cy compared to the
DGLAP predictions [J. High Energy Phys. 08 (2016) 139]
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e Full NLL BFKL including NLO vertices and collinear resummation leads to a good description of
(cos(nA¢)) data but also PYTHIA/HERWIG after MPI tuning.

e Study of G/ G fails to provide any sensible advantage.

e More differential observables needed or completely new ones
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Mueller-Navelet Jets

Less inclusive Observables

Mini-jets activity should allow a better discrimination of BFKL and DGLAP dynamics.
Need BFKLex iterative MC generator [A. Sabio-Vera, G. Chachamis, JHEP02 064 (2016)].

BFKL dynamics: looking for less inclusive variables

@ Looking for multiple gluon emission

BFKL predictions in blue, BFKL

along ladder characteristic of BFKL: predictions in green.
< 1 XN:\ ‘ number, pr, rapidity distributions of N+1
p7> = — PTi e e " .
i minijets - _1 Yi ~
= : e (R) = w3 2 S aver
o Comparison between BFKL-ex MC i=1 7'
and pythia/herwig to find best age of adjacent I’apidity ra-

variables: collaboration with A.
Sabio Vera, D, Gordo, G.
Chachamis, F. Deganutti, T. Raben

tios.

N
{pr) = & X lpril ** of mini-
i=1

jet transverse momenta.

Path forward to be explored at future

Snowmass Meetings?

Probing the BFKL dynamics at hadr ers: Jet gap jet events

Figure: Slide by C.Royon
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Mueller Tang jets

GAP

]
o e e

e No radiation into the rapidity gap suggests the
color-singlet exchange contributes substantially to

the jet-gap-jet cross section.
e Fixed rapidity gap |77| < 1, no charged particles and
no photons or neutral hadrons with pr > 0.2 GeV.

e Dijet events. At least 2 hard-jets 'Tet > 40 GeV
e Complete the NLL phenomenology analysis includ- and || > 1.5
ing the NLO impact factors. [Nucl. Phys. B887, 309
(2014), Nucl.Phys. B889, 549 (2014), PLB 735,168 (2014)].

e The BFKL predictions for these processes have been
studied at LL accuracy and partially at NLL order

o Jet radius Rje: = 0.4 and anti-k; jet algorithm.
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CMS and DO analyses

e

7 TeV [EPJC 78,242 (2018))]

pj? = 60-100 GeV/
cMs +oma
PYTHIA 6 (normalized for N,___>3)
[IHERWIG § (rormalized atN___ =0)

0.41pb" (7 Tev)

A s 1

E T

Nyscks

o Charged-particle multiplicity in the gap region be-

tween the

tagged jets compared to PYTHIA and

HERWIG predictions.

e HERWIG 6:

include contributions from color sin-

glet exchange (CSE), based on BFKL at LL.

e PYTHIA 6

: inclusive dijets (tune Z2*), no-CSE.
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[0. Kepka, C. Marquet, C. Royon Phys.Rev. D83.034036 (2011)]

e Fraction of jet-gap-jet events vs inclusive dijets measured by DO

Coll. [Phys.Lett. B440 189 (1998)] well reproduced by BFKL estimates. NLL order
correction are necessary

o R — NLL* BFKL
Ratio R = NLOQCD

of jet-gap-jet events to inclusive dijet events as a function of pt.
e NLL™ ~ NLL (forward) Green Func. + collinear improvement. No NLO Imp. Factors

Normalization fixed by gap survival probability \5\2 =0.1.




CMS analysis 13 TeV

See C.Baldenegro’s talk given at Snowmass EF06 meeting on forward physics @ small-x QCD of June 17.
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Unexpected rise in Anj; and little dependence from pr .

e Comparisons to Royon, Marquet, Kepka (RMK) model based on BFKL NLL calculations + LO impact factors [PRD83.034036], and
survival probability |S|? = 0.1.

e RMK model predicts a decreasing fraction with increasing Anj;, in disagreement with the trend observed in
data.

e Good to fair agreement to data for fcse vs pr,.
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Observable Definition ~ Theoretical picture

NLO impact factors

Several non trivial modifications to the theoretical description needed to accommodate the NLO corrections to

the impact factors (IF).
i NLO impact factors have yet to be implemented for
phenomenology studies to complete the NLO calcu-

lation (BFKL@NLL + impact factors@NLO).
- Efforts by D. Colferai, F. Deganutti, C. Royon, T.
Raben on this direction (private communication),
and by U. of Munster coll. (M. Klasen, J. Salomon,

P. Gonzlez, M. Kampshoff).

Non-factorizable. NLO impact factors connect the Gluon Green functions over the “cut”

dé
dJlszqu
K n even
A(Y, q) ~Va(q)Vb(q)/d2kd2k/G(k,k',q, Y) @(y,q,?> <5 ]
>

squared amplitude to multiple convolution between the the jet vertices and the GGFs.

=AY, 9)P = Vi(ki,ke,J1,0) ® G(ki,K'1,9, Y) ® G(k2,K'2,q, Y) ® Vo(K'1,k 2, J2, q),

yxh—2 K K
mzﬁ (17/7,27/7,2; U) 2Fp (1771,27/'1, 2; e )+{1<—>2}:|.

e From
e LO vertices are c-numbers and can be factorized out of the convolution.

e Average of GGF over the reggeon momenta is remarkably simple.

AY.q) ~ AY,q=0)

QN‘ ~

QCD at high energy
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Calculation strategy

GGF LL + NLO jet vertex

N L
Breaking of high-energy factorization or uncontrolled observable definition? % - - %
. &
d6 o o Sy | - Zams
dhdhd’q / Phad® ko V" (ki k2, 4 4)G(ki g, Y)Gl(k2 a0, V)V (42, ) §°‘“% ¢ ?:7‘%

Virtual corr Real corr. (quark — quark) Real corr. (quark — gluon)
LO (é% (6665@
g g + g g + g g + %
. pue @ vl @ el

Jet Pyg(z) =~ iasza()

. =0 TN yrelea) = /dngq(z) XY
% All Y factors should be resummed in GGF
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Calculation strategy

Preliminary Results

Differential CrossSections

2.5 %1077

2% 1077 *‘N\N\
1.5 %1075
1x 1073 -

Comparing size of next-to-leading corrections. A F

do
i

e LO : VLO ® GLL ® GLL ® VLO o]

e NLO : VMO g Gt g Gt g v1©
e NLL : V9 g Gt g GME @ V10

100

Beyond the back-to-back configuration. Marked peak in the
vicinity of A¢ ~ 7 but not quite. The cross-section drops
before the azimuthal diff. reaches 7 due to important subtrac-
tions.

9%10-5 |Npo —
8x 107
7x 1073
6x 107
5% 1075
4% 1073
31073
2% 1073

1x10°%

0
0.1 0.2
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Conclusions

Conclusions

QCD predictions even in the perturbative regimes are not fully understood (semi-hard regimes).

BFKL NLL corrections are large and must be taken into account.

The search for BFKL signature via Mueller-Navelet jet process is contaminated by important DGLAP
contributions.

Look for more exclusive observables that show a pronounced DGLAP suppression.

BFKL predictions for Mueller-Tang observables remain inconclusive.

Toward a phenomenological analysis at full NLL order.

Not only jets: Drell-yang pairs, p and J/; ...

FD, CR (KansasUni) QCD at high energy



Backup




Previous fits and analysis

Fraction of jet-gap-jet events vs inclusive dijets measured by DO Coll. [phys.Lett. Ba4o 180 (1998) well reproduced by BFKL
estimates. NLL order correction are necessary

~

R g S
~ 18 F e DOdata =

c 1B E El

o S g B — BFKL(MI+5C) E|
S0.014 = 0 . =
3 5 U F . BFKL (MI, no SCI, 3
Sz [ O DOData g E 8FKL (3%) E
o1 Ry MT (11%) I

: o 1 E __.'._’"’ =
0.008 = T E
0.006 08 F *i 1
0.6 g7 El

0004 = BFKL NLL/NLO QCD £e |
o4 B 3

el S BFKL LL/NLO QCD 4 E El

o £ 0 Bl s
10 15 20 25 30 35 40 45 50 55 60 20 30 40 50 60 70

E

[O. Kepka, C. Marquet, C. Royon Phys.Rev. D83.034036 (2011)]
. [R. Enberg, G. Ingelman, L. Motyka Phys.Lett.B524,273 (2002)]

e Ratio R = % of jet-gap-jet events to inclu- L X

sive dijet events as a function of py. . NLP BFKL predictions + .soft rescattering cor-
. . rections (EIM models) describe many features of
e NLL" ~ NLL (forward) Green Func. + collinear the data (not so good for other observables).

improvement. No NLO Imp. Factors . X . i

o . . . e Different implementations of underlying event:

. ‘l\lso‘gmjllozaltlon fixed by gap survival probability Gap survival probability (S),
o Multiple interactions (MI),

Soft colour interactions (SCI).
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Calculation strategy

non-forward Gluon Green Function

The decision to keep just the pure NL contribution brings some simplification SN —
dé 2 2 NLO §
——— = | FPhd’ ko V" ki, k2, q; J X Tk,
dJyd)rd?q / 1l VT (ka, ka, 63 A1) ké - B " $
( =z ( ~IL )
[ 16K 1a.v) [ K60k, a.¥) VIO a) g % 5 )
G(kg,a,Y) G(kp,a,Y) § %

m even 1%

k - - k
G(X1Xz,q,A6 Z/d"[ fF A2 h—2 2F1 (1 h,2—h,2; k/) oF (17h,27h,2; 7!7) +{1 H2}].

Compare LO
A(Y)

ratio(y) = 200

1.05

e Integrand is highly oscillatory and slowly falling with v. h = HT" +iv
e Fast and reliable evaluation of »Fi(a, b, ¢; z) and for large Im(a, b) notoriously difficult. e

e To avoid numerical cancellations for large conformal spin even quadruple precision not
enough. 0.95

0.9
2
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Calculation strategy

incorporating NLO impact factor

A full NLL/O calculation is within reach. NLO MT im-
pact factors recently calculated [1406.5625,1409.6704].
Very complicated! (not in a factorizable form!)

But...only certain combinations of jet vertex and Green's
function approximation orders contribute effectively to
the NL order of the cross section. The most compli-
cated combinations can be discarded because they are
subleading.

e GGF NLL + LO vertices. For this special case the general formula for the cross section can be expressed in
a much simpler form because LL vertices are idependent from the reggeon momenta.

e GGF LL + LO vertex + NLO vertex. The non trivial dependence of the NLO jet vertex from the reggeon
momenta introduces an important complication.

e GGF LL + both NLO vertices. Discarded because subleading.

FD, CR (KansasUni) QCD at high energy




Calculation strategy GGF LL + NLO jet vertex

NLO jet vertex

Peculiar characteristics of the NLO the jet vertex.

e The non trivial dependence from the reggeon momenta prevents the applicability
of the mentioned simplification imposing the use of the general formula. g g

e Up to two partons can be emitted by the same vertex. Whether they are collinear enough to form the same
jet or not depends on the choice of the jet reconstruction algorithm. (1) The two partons form the same jet
or (2) one of the two has energy lower than the calorimeter threshold and so it is not detected.

e The soft parton emission in the prohibited region alter the alignment between the forward and the backward
jet. The survival of the rapidity gap is assured imposing constraints to the additional parton emission. Jets
not back to back anymore

é\-(qa Y) — &(kJ“ kj2,0J2,127 Y)

The additional soft emission is needed to assure the cancellation of the infrared divergences.

FD, CR (KansasUni) QCD at high energy



Calculation strategy

Numerical analysis

The decision to keep just the pure NL contribution brings some simplification
dé
dJidhd?q

[ 16 K1a.v) [ K260k K2 a.¥) Vi) gcm

:/d2k1d2k2v1(k1,k2,q;Jl)x

G(k1,a,Y) G(kz,a,Y)

e Large increase in computation time due to the high-dimensional multiple integration.

The full form of the eigenfunction in momentum space is known [Bartels, Braun, Colferai, Vacca].

e The momentum dependence of the eigenfunction is expressed through hypergeometric functions in a region
of parameter very sensible to numerical fluctuations. 2Fi(a, b;c,z), a—beZ™

FD, CR (KansasUni) QCD at high energy



Calculation strategy

Numerical analysis

R

Co
o
e Calculation of the partonic cross section. L R R AR RE R Ol
(1) G as a grid of its parameters {ki, qj,0i, Ym}. It involves a numerical I A A A
integration over v and a sum over n for each set of the parameters. REEEERERE
(2) Partonic cross section as the interpolation of G grids and the NLO ¢j+1 --bov i ioiioa i i
vertex. B omporororodogdogoaos
Y, Yia

w X Z V(kl,‘7 k2j791n792m7J)G(k1;7 q7701n7 W)G(k2j> Qr702m> \//)

dkydY
e Dressing of the initial state and final state hadronization by Herwig

pp—JGJ ~
chququ x Za,b fa(xh le)fb()Qv sz)o'(kJu szv 9J1»J27 Y)
(2) Fitting of the cross section and its substitution by a sum of analytic functions of the fitting parameters.
(3) Hadronization from the proto-jet to the detector with a matching procedure to remove the double
counted diagrams. The error avoided by this subtraction is predicted to be of NL order.

(1) Proton-proton scattering

FD, CR (KansasUni) QCD at high energy



BFKL
Balitsky, Fadin, Kuraev, Lipatov (BFKL) were the first to consider the Regge limit of QCD.

The large logs come from the integration over the longitudinal momentum fraction bounded by the outermost
partons.

H H . — .y T S + _ Pa — _ Pb
Sudakov parametrization ki = zip™ + zZip~ +k, pT = \‘}E,p = \/%
Pa P1
ky On shell conditions — (k1, k2, z1), Z1 = ki/s, Z2 = q/zs.
D3 Positive energies E >0 — 1>z > 2z > 0.
—)— 1
/dﬂ3 oc/ %/dzﬁ(zz —ka/s) = |og(si)
1 0
ko =
Db D2 Changing sp leaves the LL unaltered.

The amplitude is independent from the longitudinal fractions:
e Eikonal approximation —igi(p. — ki)y" u(pa) ~ —2igp4’.

° k1%le++k2,k1%fzpi+k2*>k12:(21p+,0,k1)2*> L~

A
For s > t the predominant contribution comes from the strongly ordered region
13> 2> 230y v > y. v = log(5%F).

FD, CR (KansasUni) QCD at high energy



Mueller-Tang jets at LL

LL approximation: LO vertex

At LL accuracy the Gluon green function

G resumms to all orders of perturbation

theory the ladder diagrams composed

by s-channel gluons connected to t-channel
reggeizzed gluons through the Lipatov vertex.
The normalization of the Gluon

Green function fixes the jet vertex leading order.

lim G(k,k',q,Y) = G(k,k',q,0)
Y—=0
At this order, apart for the jet distribution function S that fixes the jet momentum, the jet vertex is a simple
color factors (c-number)
Vi(x, 9, xs, k) = S§(x, a; x5, k) hg,
0 2
hy = CQ/gNg 1
The independence of the LO vertices from the reggeon momenta allow for considerable simplification.

SO = x82(ky — @)6(xs — x).

FD, CR (KansasUni) QCD at high energy 9/30/20 25 /30



Mueller-Tang jets at LL

details of NLO impact factor

Details of NLO impact factor

aV W (x, k11, 193 ) k i M maxs 50)
dJ a

0) &5 | g(2 Po 7 (11 — k? 20
:V:(a)g{sg)(kax)-[77[{|n<u—;>+|n(T R e
Gry3 o, (i=# 2 2 _
— Nz (i I — k) in — 4|yl — k in
Sl (7)ot () - o s
b — k)2 2 — k2 2 2
2o () o (] () () () (£) - ]

1 A2 c2 22 In(1 —
+/Zo dz{ In Esf)(k' 2x) [qu(z) + ?%qu(z)} + [(1 —2) [1 - ;C—‘;] 121+ %) ( "(1 . Zz))J 552)(/(, 2x) + 4552)(/(, x)}
1 d? N — zk)? la|
f o [ (B = S o (1<)
2
a?(p — zk)?

A2
)> 553)(,7. q, 2x, X)Pgq(2)

X

. .00 - x. 010 (Mi,mx G

C. c2
- k 1y, z ko Iy, 2)] + —2 Jy(a, ko dq, 1 222
x{q[h(q, 19+ Akl A G ek 00 ”}H

QCD at high energy
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NLO impact factors

In general the cross section for these processes is given as a multiple convolution between the the jet vertices and the GGFs.
dé 2, 20 2 201
T = | Kl a k. ko T, q)x
G(ki,k'1,0, Y)G(ko, K 2, q, Y)Vo(K'1, K 2, J2,0), T ={kg,xg}.

Jet Functions for NLO impact factor

P K2 (1-2)?2 1 101 I—z-k2 P2
et e @) T Lo @

1 1 ((I—(l—z)k)z (I—k)z)_

4(q—k+1)2 (g — zk)2 q2
1 73 (k —14)?
I(a, k, 1y, 1) = -
Rkl o) = [(,, KR — k)2 (g k2a— )2
3 (k — Ip)? 1 ( (Iy = 1p)?
N _!
(@—K2@—k+1)?  (a—k2a—1)%2 2\(q—11)%(q— 1)

(k=1 — 1)? (k=11 — 1p)? (I — 1)? )}
+ + +
(@ —k+1)2a@—1)?  (a—k+h)2a—1)2  (q—k+11)%(a—k+1)?
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Mueller-Tang jets at LL ~ LO vertex

LL approximation: Non forward gluon Green function

The GGF is given by the Mellin transform of the function f,, which is the solution of the BFKL equation. The
solution of the non forward BFKL equation is more naturally expressed in the impact parameter space.

—+iinf
G(k,k',q,Y) _/ 9 Yot (kK q)
Ziinf 2T
+inf +lnf R
£ _ nv :U / /Enu
(p13p2ap17p2) me/ - w_w(n ) (p17p2) (p17p2)
_(p—p\"(pi-p3)" 1\"(1\" (-1\"/-1}"
Env(p1,p2) = o (=) (=) - (= -
pLp2 PP P2 P2 P1 P1
Lipatov term Mueller-Tang correction

E,. are the eigenfunctions in the impact parameter space.
The GGF in momentum space is recovered applying a Fourier transformation to the eigenfunctions.

d2r1d2r2

Eny(k7q) = (27T)4 nu(pl,pz)e (k-r1+(q—k)-r2)

FD, CR (KansasUni) QCD at high energy



Mueller Navelet jets at NLL

h

At NLL the approximation is refined including the terms o< af Iog("_l)(%t).

e Larger variety of Feynman diagrams give rise to a much more complex
iterating structure

e LL order diagrams evaluated in a broader kinematic domain
Up to two partons are close in rapidity (Quasi-MRK).

MADPN> >y y > >y >y
The jet vertex gets its part of the radiative corrections

V(ky, x;, k) = VO(ky, x;, k) + as VP (ky, x;, k)

e NL corrections to the jet vertex calculated by Bartels, Colferai and Vacca (BCV).
e QMRK — up to two outgoing parton per vertex
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BFKL approach

BFKL resummation

Balitsky, Fadin, Kuraev, Lipatov (BFKL) considered the Regge limit of QCD.

QQ0Q000Q

Diagrams enhanced by log’ s/t grouped according to the number of lines cut by Cutkosky.

K
e real corrections collected into the Lipatox vertex ;.
e virtual corrections contribute to the gluon re%geization. ke
t-channel gluon propagators acquire a power dependence:
1 1 s E(t) . 5,8 1 /s\<®
! log (2) + —=1 DN+ ==(=
t—>t<+e(t)og(t)+ > og(t)+ t(f) K
At LL simple repeating structure: k.

FD, CR (KansasUni) QCD at high energy
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