Pandora for dual phase LArTPCs

Dom Brailsford, Maria Brigida Brunetti, Etienne Chardonnet

FD sim/reco workshop
17/09/20

Pandora for dual phase LArTPCs

- Pandora is a multi-algorithm approach to pattern recognition, deployed in many LArTPC experiments
- Harnesses physics and detector information to maximise reconstruction potential
- Most of Pandora's algorithms are suitably detector agnostic and work 'out of the box' for dual-phase
- A few of Pandora's most powerful algorithms require three readout views (single phase LArTPCs) to operate
- Unusable by a two readout view dual phase LArTPC
- The following slides overview a tailored end-to-end reconstruction workflow for dual phase LArTPCs in Pandora, including expansion and adaptation of key algorithms
- The new Pandora workflow is a part of the ProtoDUNE-DP offline production for cosmic rays

2D reconstruction: using hit widths

- 2D clustering algorithm which assesses hit widths
- Developed by Isobel Mawby for DUNE-FD
- Improves reconstruction performance for sparse tracks
- Such tracks are typically almost parallel to the drift axis

Without hit width clustering alg

With hit width clustering alg

2D reconstruction: LEM and CRP gaps

- 'Blind' regions of the detector between adjacent LEMS and adjacent CRPs
- Gap positions now implemented in pandora
- Knowledge of the gaps provides guidance to Pandora's 2D clustering
 algorithms

2D->3D matching

- Matches compatible 2D clusters across readout views to create 3D clusters
- Pandora for single-phase/3view LArTPCs utilises all three views simultaneously to maximise 2D->3D matching potential
- Pandora for dual-phase/2-view LArTPCs now utilises calorimetric information for the first time to match clusters across views

2D->3D matching

- Compare all pairwise cluster combinations across views
- Find the time-overlap region for each cluster pair
- Create fractional charge profiles for each cluster in said overlap region (red and black histograms)
- For each cluster comparison, calculate:
- Global matching score*
- Local matching scores* for regions of the overlap (blue curves)
- A high score (global or local) indicates a good match

Di-muon particle gun in ProtoDUNE-DP

Most recent 2D->3D

matching developments

- Packaged the calorimetric matching metrics into tools which decide if two 2D clusters match together to make a 3D particle
- Most tools target a particular topology -> harnesses geometry and calorimetry together
- Implemented tools
- Clear tracks tool
- Long tracks tool

Clear tracks tool
calorımetry together

- Two clusters only overlap each other
- The calorimetry matching metrics between the two clusters are suitably high

Most recent 2D->3D

matching developments

- Packaged the calorimetric matching metrics into tools which decide if two 2D clusters match together to make a 3D particle
- Most tools target a particular topology -> harnesses geometry and calorimetry together
- Implemented tools
- Clear tracks tool
- Long tracks tool
- Simple tracks tool

Long tracks tool

- Cluster(s) match multiple other clusters in the opposing view
- Ambiguity broken by picking comparisons with sufficiently long regions that calorimetrically match

Most recent 2D->3D

matching developments

Simple tracks tool

- Packaged the calorimetric matching metrics into tools which decide if two 2D clusters match together to make a 3D particle
- Most tools target a particular topology -> harnesses geometry and calorimetry together
- Implemented tools
- Clear tracks tool
- Long tracks tool
- Simple tracks tool
- No fancy diagram
- Ranks all remaining cluster comparisons and repeatedly picks the highest-rank comparison
- Ranking based on
- Locally matched fraction
- Fraction of local matching scores above threshold
- Global matching score
- Number of matched points
- The raw number of local matching scores above threshold

Reconstruction performance

- All recent developments have been very focussed on ProtoDUNE-DP due to recent data taking preparation
- All performance assessments have revolved around simulated high multiplicity cosmic ray events

Pandora development iteration

Fraction of cosmic rays correctly reconstructed

Reconstruction performance

- All recent developments have been very focussed on ProtoDUNE-DP due to recent data taking preparation
- All performance assessments have revolved around simulated high multiplicity cosmic ray events

Pandora development iteration

Starting point

+ Hit width 2D clustering and two-view 2D->3D matching (clear tracks tool only)

Fraction of cosmic rays correctly reconstructed46\%

57\%

2D projections of 3D reconstruction

Reconstruction performance

- All recent developments have been very focussed on ProtoDUNE-DP due to recent data taking preparation
- All performance assessments have revolved around simulated high multiplicity cosmic ray events

Pandora development
iteration

Starting point

+ Hit width 2D clustering and two-view 2D->3D matching (clear tracks tool only)
+ Long tracks and simple tracks tools

Fraction of cosmic rays correctly reconstructed46\%57\%76\%

2D projections of 3D reconstruction

Future work

- Assess/benchmark performance to target improvements
- 2D->3D matching tool for matching across the 'otherview' detector gaps
- See diagrams

Summary

- Pandora is a multi-algorithm approach to pattern recognition, currently deployed in multiple LArTPC experiments
- A few of Pandora's most powerful algorithms require three views to function and so are not appropriate for dual phase-style LArTPCs
- We have expanded/adapted some key areas of Pandora's workflow to harness features of dual-phase style LArTPCs
- There now exists a tailored complete end-to-end reconstruction workflow for dual-phase style LArTPCs in Pandora
- The workflow already features in ProtoDUNE-DP's offline reconstruction chain

2D->3D matching

- 2D->3D matching takes 2D clusters (e.g. from each wire view) and matching them across views to make 3D objects
- Pandora's main 2D->3D matching algorithm requires a cluster in three distinct views to function
- Combining positions from clusters in two of the views infers a position in the third view. A pseudo chi2 is calculated for inferred vs actual positions along the cluster
- This is problematic for any detector technology which only has two views (e.g. the CRP-based dual-phase LArTPCs)
- A solution: Use the charge depositions along the 2D clusters to provide the redundant information to over constrain the matching
- The following slides outline a new pandora algorithm which harnesses the charge depositions to help inform the 2D->3D matching in a two-view LArTPC

2D->3D matching

1. Compare every 2D cluster in one view with every cluster in the other view (each one of these comparisons is a matching candidate)
2. For each matching candidate, find the region along the drift coordinate that the two clusters share (the \mathbf{X} overlap)

2D->3D matching

3. Extract the fractional hit charge profiles of the two clusters in the X overlap

2D->3D matching

4. Resample/downsample the two charge profiles so that they are equally sampled along the x -axis

2D->3D matching

5. Slide a window across the profiles.

Calculate the correlation coefficient p-value (p) for the points in the window

- Define $L=1-p$ for each window

2D->3D matching

6. Fraction of windows with L, local matching score (blue line on plot), above threshold (currently 0.99) indicates a good match

Example 2D->3D matching (MC di-muon event, Nu2020 poster, downsampling factor $==20$)

Same di-muon event, downsampling factor $==5$ (factor currently used in the codebase)

Matching performance (10 GeV di-muon, complete overlap)

Matching cands. where at least one cluster matches to a muon

- Excess of incorrect matches at local. match. frac. $==1$

Same as left and also number of
charge samples > min. samples

- Excess reduced when rejecting matching candidates with the minimum number of sampling points
- 4\% of the correct matches are also dropped (almost all from the 0 bin)

Example incorrect match with locally matched fraction==1

212
0

- A lot of EM activity from both muons
- The EM activity results in a lot of small 2D clusters
- The bad match consists of
- 16 hit electron cluster in view 0
- A very small segment of one of the muon clusters in view 1

Example 'correct’ match where locally matched fraction==0

- EM activity is to blame, again
- This match consists of
- Modestly sized view 0 cluster that truth matches to primary muon
- A much larger primary muon cluster in view 1
- Both clusters truth match to the same muon

Matching performance (10 GeV di-muon, complete overlap)

- Plot shows the average local match fraction vs the number of samples (after downsampling) in each matching candidate
- Error bars are the standard deviation (NOT standard error on the mean)
- Matching candidates with a low number of sampling points are dominated by small EM clusters

But does the calorimetry-based metric provide any more information than checking the the cluster X geometry?

- The two pairs of distributions show the fraction of the cluster span contained in the X overlap
- For the 10 GeV di-muon sample
- The geometry-based separation is very minimal
- Disclaimer: This sample was specifically chosen so that there was maximal ambiguity in the cluster X geometry

But does the calorimetry-based metric provide more information than checking the the cluster X geometry?

- Compare the geometry-based metrics (RHS plots) with the calorimetry-based metric (bottom)

Correlation coefficient's pvalue

- For uncorrelated bivariate normal distribution pairs, the correlation coefficient follows a Student t -distribution with n -2 degrees of freedom
- The t -value is

$$
t=r \sqrt{\frac{n-2}{1-r^{2}}}
$$

- P-value is calculated by integrating the t-distribution above the calculated t value (a one tailed test)
- $\mathrm{HO}: \mathrm{r}==0$
- H1: r>0
- The t-distribution supposedly approximately holds for non-gaussian variables, provided the sample sizes are large enough. I'll revisit this in a few slides

Resampled fractional charge profiles (di-muon sample)

Toy study

- Revisiting the student t-distribution assumption
- Produce 10000 fake fractional charge profiles
- Fill 3 histograms with landau throws, smeared with a gaussian
- Two hists. are filled with the same landau values but smeared separately
- Third hist filled with separate landau values
- Each bin is filled N times with distinct throws to mimic the downsampling
- Calculate correlation coefficient and pvalue
- Landau $(315,13)$
- Gaus $(1,0.1)$
- N hist bins == 30
- N samples per bin $==5$

Toy study

- Top plot shows correlation coefficient for the 10,000 universes
- Black: correlated distributions
- Red: uncorrelated distributions
- Bottom plot shows corresponding p-values
- The red distribution should be flat, but it is not

P-value vs r (t-distribution)

Toy study

- Instead, calculate the p-value using permutation tests
- Randomly shuffle the bins for one distribution in a comparison and recalculate r
- P-value $==$ fraction of times you measure an r that is more extreme than your original r measurement
- Top plot shows correlation coefficient (same as previous slide)
- Bottom plot shows corresponding p -value

p-value vs r (permutation test)

