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Pandora for dual phase 
LArTPCs

• Pandora is a multi-algorithm approach to pattern recognition, deployed in many LArTPC 
experiments


• Harnesses physics and detector information to maximise reconstruction potential


• Most of Pandora’s algorithms are suitably detector agnostic and work ‘out of the box’ 
for dual-phase


• A few of Pandora’s most powerful algorithms require three readout views (single phase 
LArTPCs) to operate


• Unusable by a two readout view dual phase LArTPC


• The following slides overview a tailored end-to-end reconstruction workflow for dual 
phase LArTPCs in Pandora, including expansion and adaptation of key algorithms


• The new Pandora workflow is a part of the ProtoDUNE-DP offline production for 
cosmic rays
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2D reconstruction: using hit 
widths

• 2D clustering algorithm which 
assesses hit widths


• Developed by Isobel Mawby 
for DUNE-FD


• Improves reconstruction 
performance for sparse tracks


• Such tracks are typically 
almost parallel to the drift 
axis

Without hit width clustering alg

With hit width clustering alg

Particle gun muons in ProtoDUNE-DP3



2D reconstruction: LEM and 
CRP gaps

• ‘Blind’ regions of the 
detector between adjacent 
LEMS and adjacent CRPs


• Gap positions now 
implemented in pandora


• Knowledge of the gaps 
provides guidance to 
Pandora’s 2D clustering 
algorithms

Cosmic reconstruction – 2D reconstruction (2) 

(E. Chardonnet, DUNE physics week, 11/06/20)
gaps in same view

gaps in other view
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wire coordinate
* LEM gaps in LArSoft v08_59_00 and above; CRP gaps to follow in upcoming release

• Detector gaps between CRP and LEM can split tracks
• View-specific gaps have fixed positions, but can appear anywhere in other view
• Detector gaps implemented in Pandora* à help merge across same-view gaps
• Calorimetry-based tool to merge across gaps in other view under development

6/12
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2D->3D matching
• Matches compatible 2D 

clusters across readout views 
to create 3D clusters


• Pandora for single-phase/3-
view LArTPCs utilises all three 
views simultaneously to 
maximise 2D->3D matching 
potential


• Pandora for dual-phase/2-view 
LArTPCs now utilises 
calorimetric information for 
the first time to match clusters 
across views
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2D->3D 
matching

• Compare all pairwise cluster 
combinations across views


• Find the time-overlap region for each 
cluster pair


• Create fractional charge profiles for each 
cluster in said overlap region (red and 
black histograms)


• For each cluster comparison, calculate:


• Global matching score*


• Local matching scores* for regions of 
the overlap (blue curves)


• A high score (global or local) indicates a 
good match
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*Score based on correlation coefficient p-value

Di-muon particle gun in ProtoDUNE-DP
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Most recent 2D->3D 
matching developments

• Packaged the calorimetric matching 
metrics into tools which decide if two 
2D clusters match together to make a 
3D particle


• Most tools target a particular topology 
-> harnesses geometry and 
calorimetry together


• Implemented tools


• Clear tracks tool


• Long tracks tool


• Simple tracks tool

2D à 3D matching (3)

9/12
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• Locally matched fraction 
The fraction of local matching 

scores above a threshold
• Matching score
Calculated as the local 
matching score, over whole 
overlap region
• Number of matched points
The number of local matching 
scores above a threshold

• Two clusters only overlap each other


• The calorimetry matching metrics 
between the two clusters are 
suitably high

Clear tracks tool
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• Locally matched fraction 
The fraction of local matching 

scores above a threshold
• Matching score
Calculated as the local 
matching score, over whole 
overlap region
• Number of matched points
The number of local matching 
scores above a threshold

• Cluster(s) match multiple other clusters 
in the opposing view


• Ambiguity broken by picking 
comparisons with sufficiently long 
regions that calorimetrically match

Long tracks tool
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Most recent 2D->3D 
matching developments

• Packaged the calorimetric matching 
metrics into tools which decide if two 
2D clusters match together to make a 
3D particle


• Most tools target a particular topology 
-> harnesses geometry and 
calorimetry together


• Implemented tools


• Clear tracks tool


• Long tracks tool


• Simple tracks tool

• No fancy diagram


• Ranks all remaining cluster 
comparisons and repeatedly picks the 
highest-rank comparison


• Ranking based on


• Locally matched fraction 

• Fraction of local matching 
scores above threshold


• Global matching score 

• Number of matched points 

• The raw number of local 
matching scores above 
threshold

Simple tracks tool
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Reconstruction performance
• All recent developments have been very focussed on 

ProtoDUNE-DP due to recent data taking preparation


• All performance assessments have revolved around 
simulated high multiplicity cosmic ray events

Pandora development 
iteration

Fraction of cosmic rays 
correctly reconstructed

Starting point 46%

+ Hit width 2D clustering and 
two-view 2D->3D matching 

(clear tracks tool only)
57%

+ Long tracks and simple 
tracks tools 76%

2D projections of 3D 
reconstruction
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Future work
• Assess/benchmark 

performance to target 
improvements


• 2D->3D matching tool for 
matching across the ‘other-
view’ detector gaps


• See diagrams X X

Y Z

Same view Other view

Cosmic reconstruction – 2D reconstruction (2) 

(E. Chardonnet, DUNE physics week, 11/06/20)
gaps in same view

gaps in other view
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wire coordinate
* LEM gaps in LArSoft v08_59_00 and above; CRP gaps to follow in upcoming release

• Detector gaps between CRP and LEM can split tracks
• View-specific gaps have fixed positions, but can appear anywhere in other view
• Detector gaps implemented in Pandora* à help merge across same-view gaps
• Calorimetry-based tool to merge across gaps in other view under development
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Summary
• Pandora is a multi-algorithm approach to pattern recognition, 

currently deployed in multiple LArTPC experiments


• A few of Pandora’s most powerful algorithms require three views to 
function and so are not appropriate for dual phase-style LArTPCs


• We have expanded/adapted some key areas of Pandora’s 
workflow to harness features of dual-phase style LArTPCs


• There now exists a tailored complete end-to-end reconstruction 
workflow for dual-phase style LArTPCs in Pandora 


• The workflow already features in ProtoDUNE-DP’s offline 
reconstruction chain
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2D->3D matching
• 2D->3D matching takes 2D clusters (e.g. from each wire view) 

and matching them across views to make 3D objects 

• Pandora’s main 2D->3D matching algorithm requires a cluster in 
three distinct views to function


• Combining positions from clusters in two of the views infers a 
position in the third view.  A pseudo chi2 is calculated for 
inferred vs actual positions along the cluster 

• This is problematic for any detector technology which only has 
two views (e.g. the CRP-based dual-phase LArTPCs)


• A solution: Use the charge depositions along the 2D clusters to 
provide the redundant information to over constrain the matching


• The following slides outline a new pandora algorithm which 
harnesses the charge depositions to help inform the 2D->3D 
matching in a two-view LArTPC
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2D->3D matching

1. Compare every 2D cluster in one view with 
every cluster in the other view (each one of 
these comparisons is a matching candidate)


2. For each matching candidate, find the region 
along the drift coordinate that the two clusters 
share (the X overlap)
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2D->3D matching
3. Extract the fractional hit charge profiles of 

the two clusters in the X overlap 
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2D->3D matching
4. Resample/downsample the two charge 

profiles so that they are equally sampled 
along the x-axis
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2D->3D matching
5. Slide a window across the profiles.  

Calculate the correlation coefficient p-value (p) 
for the points in the window

• Define L=1-p for each window
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2D->3D matching
6. Fraction of windows with L, local matching score 

(blue line on plot), above threshold (currently 
0.99) indicates a good match
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Example 2D->3D matching (MC di-muon event, Nu2020 poster, downsampling 
factor == 20)
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Same di-muon event, downsampling factor == 5 (factor currently used in 
the codebase)
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Matching performance (10 GeV 
di-muon, complete overlap)

• Excess of incorrect matches 
at local. match. frac. == 1
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one cluster matches to a muon

Same as left and also number of 
charge samples > min. samples

• Excess reduced when rejecting 
matching candidates with the 
minimum number of sampling points


• 4% of the correct matches are also 
dropped (almost all from the 0 bin)23



Example incorrect match with 
locally matched fraction==1

View 0 View 1

• A lot of EM activity from 
both muons


• The EM activity results in 
a lot of small 2D clusters


• The bad match consists 
of 


• 16 hit electron cluster 
in view 0


• A very small segment 
of one of the muon 
clusters in view 1
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Example ‘correct’ match where 
locally matched fraction==0

• EM activity is to blame, again


• This match consists of


• Modestly sized view 0 cluster that truth 
matches to primary muon


• A much larger primary muon cluster in view 1


• Both clusters truth match to the same muon
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• Plot shows the average local 
match fraction vs the 
number of samples (after 
downsampling) in each 
matching candidate


• Error bars are the 
standard deviation (NOT 
standard error on the 
mean)


• Matching candidates with a 
low number of sampling 
points are dominated by 
small EM clusters
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Matching performance (10 GeV 
di-muon, complete overlap)
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But does the calorimetry-based 
metric provide any more 

information than checking the the 
cluster X geometry?

• The two pairs of distributions 
show the fraction of the cluster 
span contained in the X overlap


• For the 10 GeV di-muon sample


• The geometry-based separation is 
very minimal


• Disclaimer: This sample was 
specifically chosen so that there 
was maximal ambiguity in the 
cluster X geometry
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But does the calorimetry-based 
metric provide more information 
than checking the the cluster X 

geometry?

• Compare the geometry-based 
metrics (RHS plots) with the 
calorimetry-based metric (bottom)
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Correlation coefficient’s p-
value

• For uncorrelated bivariate normal distribution pairs, the correlation coefficient 
follows a Student t-distribution with n-2 degrees of freedom


• The t-value is 
 
 
 

• P-value is calculated by integrating the t-distribution above the calculated t 
value (a one tailed test)


• H0: r==0


• H1: r>0


• The t-distribution supposedly approximately holds for non-gaussian variables, 
provided the sample sizes are large enough.  I’ll revisit this in a few slides
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Resampled fractional charge profiles (di-muon sample)
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Toy study
• Revisiting the student t-distribution 

assumption 

• Produce 10000 fake fractional charge 
profiles

• Fill 3 histograms with landau throws, 

smeared with a gaussian

• Two hists. are filled with the same 

landau values but smeared separately

• Third hist filled with separate landau 

values

• Each bin is filled N times with distinct 

throws to mimic the downsampling

• Calculate correlation coefficient and p-

value


• Landau (315, 13)

• Gaus (1,0.1)

• N hist bins == 30

• N samples per bin == 5
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Toy study
• Top plot shows correlation 

coefficient for the 10,000 
universes


• Black: correlated 
distributions


• Red: uncorrelated 
distributions


• Bottom plot shows 
corresponding p-values


• The red distribution 
should be flat, but it is 
not
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P-value vs r (t-distribution)
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Toy study
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• Instead, calculate the p-value 
using permutation tests


• Randomly shuffle the bins 
for one distribution in a 
comparison and 
recalculate r


• P-value == fraction of 
times you measure an r 
that is more extreme than 
your original r 
measurement


• Top plot shows correlation 
coefficient (same as previous 
slide)


• Bottom plot shows 
corresponding p-value
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p-value vs r (permutation test)
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