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Pandora for dual phase
LArTPCs

Pandora is a multi-algorithm approach to pattern recognition, deployed in many LArTPC
experiments

e Harnesses physics and detector information to maximise reconstruction potential

Most of Pandora’s algorithms are suitably detector agnostic and work ‘out of the box’
for dual-phase

A few of Pandora’s most powerful algorithms require three readout views (single phase
LArTPCs) to operate

e Unusable by a two readout view dual phase LArTPC

The following slides overview a tailored end-to-end reconstruction workflow for dual
phase LArTPCs in Pandora, including expansion and adaptation of key algorithms

e The new Pandora workflow is a part of the ProtoDUNE-DP offline production for
cosmic rays



2D reconstruction: using hit
widths

Without hit width clustering alg

e 2D clustering algorithm which
assesses hit widths

* Developed by Isobel Mawby
for DUNE-FD

* |mproves reconstruction
performance for sparse tracks

e Such tracks are typically
almost parallel to the drift
axis
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2D reconstruction: LEM and
CRP gaps

 ‘Blind’ regions of the
detector between adjacent
LEMS and adjacent CRPs

e (Gap positions now
implemented in pandora

time coordinate
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* Knowledge of the gaps T
provides guidance to ' - / 7 |
Pandora’s 2D clustering wire coordinate

algorithms
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2D->3D matching

B —————

e Matches compatible 2D

clusters across readout views
to create 3D clusters

Pandora for single-phase/3-
view LArTPCs utilises all three
views simultaneously to
maximise 2D->3D matching
potential

Pandora for dual-phase/2-view
LArTPCs now utilises
calorimetric information for
the first time to match clusters
across views



2D->3D
matching

Compare all pairwise cluster
combinations across views

Find the time-overlap region for each
cluster pair

Create fractional charge profiles for each
cluster in said overlap region (red and
black histograms)

For each cluster comparison, calculate:
e Global matching score*

* Local matching scores” for regions of
the overlap (blue curves)

* A high score (global or local) indicates a

good match

*Score based on correlation coefficient p-value
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Most recent 2D->3D
matching developments

Clear tracks tool
 Packaged the calorimetric matching

metrics into tools which decide if two
2D clusters match together to make a
3D particle

>

View 0

z (wire coordinate)

e Most tools target a particular topology
-> hqrnesses geometry and (T voordinate)
calorimetry together

>

e Implemented tools

z (wire coordinate)

/ View 1

>
x (drift coordinate)

e (Clear tracks tool

» Two clusters only overlap each other

e The calorimetry matching metrics
between the two clusters are
suitably high



Most recent 2D->3D
matching developments

Long tracks tool
 Packaged the calorimetric matching

metrics into tools which decide if two § 1
2D clusters match together to make a =
3D particle S _
5 View 0
 Most tools target a particular topology )

-> harnesses geometry and —>
x (drift coordinate)

calorimetry together 4
S
._‘§
e Implemented tools S
g View 1
N /
>

° Long tracks tool x (drift coordinate)

e Cluster(s) match multiple other clusters
in the opposing view

e Ambiguity broken by picking
comparisons with sufficiently long
regions that calorimetrically match



Most recent 2D->3D
matching developments

Simple tracks tool
 Packaged the calorimetric matching

metrics into tools which decide if two « No fancy diagram
2D clusters match together to make a
3D particle e Ranks all remaining cluster

comparisons and repeatedly picks the
_ highest-rank comparison
e Most tools target a particular topology

-> harnesses geometry and e Ranking based on

calorimetry together
e Locally matched fraction

* Implemented tools e Fraction of local matching
scores above threshold

e Global matching score
e Number of matched points

e The raw number of local
matching scores above
threshold

e Simple tracks tool



Reconstruction performance

2D projections of 3D
reconstruction

e All recent developments have been very focussed on
ProtoDUNE-DP due to recent data taking preparation

* All performance assessments have revolved around
simulated high multiplicity cosmic ray events

Pandora development Fraction of cosmic rays
iteration correctly reconstructed

Starting point 46%

10




Reconstruction performance

2D projections of 3D
reconstruction
e All recent developments have been very focussed on

ProtoDUNE-DP due to recent data taking preparation /‘/ ~~~~~~ /‘tfi:_fff? <,

e All performance assessments have revolved around o A N
simulated high multiplicity cosmic ray events .

Pandora development Fraction of cosmic rays Y. RS
iteration correctly reconstructed N \ NS

tarting point 469 DA - A
Starting p % AL N

+ Hit width 2D clustering and | e P
two-view 2D->3D matching 57% /

(clear tracks tool only) / g
-
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Reconstruction performance

e All recent developments have been very focussed on
ProtoDUNE-DP due to recent data taking preparation

* All performance assessments have revolved around
simulated high multiplicity cosmic ray events

Pandora development Fraction of cosmic rays
iteration correctly reconstructed
Starting point 46%

+ Hit width 2D clustering and
two-view 2D->3D matching 57%
(clear tracks tool only)

+ Long tracks and simple

0)
tracks tools 6%
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Future work

 Assess/benchmark
performance to target
iImprovements

e 2D->3D matching tool for
matching across the ‘other-
view’ detector gaps

e See diagrams

Same view

2

13

x Other view



Summary

Pandora is a multi-algorithm approach to pattern recognition,
currently deployed in multiple LArTPC experiments

A few of Pandora’s most powerful algorithms require three views to
function and so are not appropriate for dual phase-style LArTPCs

We have expanded/adapted some key areas of Pandora’s
workflow to harness features of dual-phase style LArTPCs

There now exists a tailored complete end-to-end reconstruction
workflow for dual-phase style LArTPCs in Pandora

* The workflow already features in ProtoDUNE-DP’s offline
reconstruction chain

14



2D->3D matching

2D->3D matching takes 2D clusters (e.g. from each wire view)
and matching them across views to make 3D objects

Pandora’s main 2D->3D matching algorithm requires a cluster in
three distinct views to function

* Combining positions from clusters in two of the views infers a
position in the third view. A pseudo chi2 is calculated for
inferred vs actual positions along the cluster

This is problematic for any detector technology which only has
two views (e.g. the CRP-based dual-phase LArTPCs)

A solution: Use the charge depositions along the 2D clusters to
provide the redundant information to over constrain the matching

The following slides outline a new pandora algorithm which
harnesses the charge depositions to help inform the 2D->3D
matching in a two-view LArTPC

15
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601

2D->3D matching yA

1. Compare every 2D cluster in one view with
every cluster in the other view (each one of
these comparisons is a matching candidate)

2. For each matching candidate, find the region
along the drift coordinate that the two clusters
share (the X overlap)

16
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2D->3D matching

Extract the fractional hit charge profiles of
the two clusters in the X overlap

Fractional charge (no units)
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2D->3D matching

4. Resample/downsample the two charge
profiles so that they are equally sampled
along the x-axis

Fractional charge (no units)
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601

2D->3D matching /

z / View 0
5. Slide a window across the profiles.
Calculate the correlation coefficient p-value (p)

for the points in the window

 Define L=1-p for each window
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2D->3D matching /

6. Fraction of windows with L, local matching score
(blue line on plot), above threshold (currently
0.99) indicates a good match

DUNE Preliminary

Fractional charge (no units)
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Example 2D->3D matching (MC di-muon event, Nu2020 poster, downsampling

Fractional charge (no units)

Fractional charge (no units)
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Same di-muon event, downsampling factor ==
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Matching performance (10 GeV
di-muon, complete overlap)

Matching cands. where at least
one cluster matches to a muon

Same particle

Different particles

0.4 0.6 0.8 1

Locally matched fraction (no units)

e Excess of incorrect matches
at local. match. frac. ==

10?

No. matching candidates
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Same as left and also number of
charge samples > min. samples
T T T | T T T T T T | T T T | T T T

Same particle

Different particles

S B % R W

04 0.6 0.8 1
Locally matched fraction (no units)

e EXxcess reduced when rejecting
matching candidates with the
minimum number of sampling points

e 4% of the correct matches are also
dropped (almost all from the 0 bin)
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Example incorrect match with
locally matched fraction==

260
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View 1

-252

A lot of EM activity from
both muons

e The EM activity results In
a lot of small 2D clusters

e The bad match consists
of

e 16 hit electron cluster
In view 0

* A very small segment
of one of the muon
clusters in view 1



601

Example ‘correct’ match where
locally matched fraction==

* EM activity is to blame, again

260

e This match consists of

* Modestly sized view 0 cluster that truth
matches to primary muon

* A much larger primary muon cluster in view 1

e Both clusters truth match to the same muon
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Matching performance (10 GeV
di-muon, complete overlap)
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‘ J:F' ./ Same particle

‘f Different particles

* Plot shows the average local
match fraction vs the
number of samples (after
downsampling) in each
matching candidate
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But does the calorimetry-based £ ©  sameparicte
metric provide any more 2 oL ifferent particies
. . . © -
information than checking the the 2z
=
cluster X geometry? g 102
5 F
o L
e The two pairs of distributions Z 10g
show the fraction of the cluster :
span contained in the X overlap 1
0 : : : .
e Forthe 10 GeV di-muon sample » View O cluster overlap fraction (no units)
9 S L L L IR
icg E Same particle
e The gepmetry—based separation is g il Different particies
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: : . g 10°:
* Disclaimer: This sample was g F
specifically chosen so that there 2 |
was maximal ambiguity in the
cluster X geometry 1:7]
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27 View 1 cluster overlap fraction (no units)



o 10T T
But does the calorimetry-based = ©  sameparticte
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Correlation coefficient’s p-
value

For uncorrelated bivariate normal distribution pairs, the correlation coefficient
follows a Student t-distribution with n-2 degrees of freedom

The t-value is

n— 2

1 — r?

t=r

P-value is calculated by integrating the t-distribution above the calculated t
value (a one tailed test)

* HO: r==
e H1:r>0

The t-distribution supposedly approximately holds for non-gaussian variables,
provided the sample sizes are large enough. I'll revisit this in a few slides
29
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I O St u d 0.25_ - Correlated i E

: fake profile y

0.18F - —

Revisiting the student t-distribution 0.161— -
assumption 0.14]- | E
Produce 10000 fake fractional charge 0°12;_ i i =I:_;
profiles 0.1 ]
e Fill 3 histograms with !andau throws, 0'08%_ _ﬁ_ﬁFl_ELrD:[ = 0O, = _f
smeared with a gaussian T T T
 Two hists. are filled with the same o 2 3 4 5 6 7 8 9 I
landau values but smeared separately ) )

* Third hist filled with separate landau 0221 — E
values 02F Uncorrelated —

* Each bin is filled N times with distinct 0180 fake profile E
throws to mimic the downsampling F -
Calculate correlation coefficient and p- 016 = E
value 0.14 . -
o2l | | -
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Toy study

Top plot shows correlation
coefficient for the 10,000
universes

e Black: correlated
distributions

e Red: uncorrelated
distributions

Bottom plot shows
corresponding p-values

e The red distribution
should be flat, but it is
Nnot



P-value vs r (t-distribution)
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Toy study

* |nstead, calculate the p-value
using permutation tests

 Randomly shuffle the bins
for one distribution in a
comparison and
recalculate r

e P-value == fraction of
times you measure an r
that is more extreme than
your original r
measurement

* Top plot shows correlation
coefficient (same as previous
slide)

 Bottom plot shows
corresponding p-value



p-value vs r (permutation test)
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