

Regression CNN for DUNE Prong Reconstruction

Junze Liu, Ben Jargowsky, Pierre Baldi and Jianming Bian University of California, Irvine

Introduction

Motivations

- The deep-learning based particle energy, vertices and momentum (energy+direction)
 reconstruction are necessary for a full AI based event reconstruction chain.
- Combining the particle mass with its kinetic energy and direction, a final state particle's
 4-momentum can be obtained

Goals

Reconstructing the neutrino energy (first version done), neutrino vertex (first version done),
 particle kinetic energy (done) and direction (this talk) for NuE and NuMu CC

This talk

- Use the prong pixel map and event pixel map data with true particle tags to reconstruct:
 - Direction for NuE and NuMu CC

Direction Reconstruction

2D Architecture

Loss Function

- Ocine Distance: $\min(1 + \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|}, 1 \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|})$
- Angle resolution (angle difference) in radians/degrees: arccos(a·b | ||a||·||b||)

Models Trained

- Event RegCNN
 - Input: 3 2D full event pixel maps
 - Output: primary electron/muon prong direction
- Prong RegCNN
 - Input: 3 2D prong pixel maps
 - Output: electron/muon prong direction

2D Pixel Maps Visualization

Each sample contains 3 401x281 2D images (3 perspectives)

Training Results

- 2D RegCNN performs better on full-event pixel maps than prong-only pixel maps
 - Outperformed Standard method on NuECC pixel maps
 - Worse than Standard method on NuMuCC pixel maps
 - Overfitted to the training data

	Training Loss	Validation Loss	Standard Training Loss	Standard Validation Loss
NuECC	0.04831	0.05204	0.2220	0.2220
NuMuCC	0.00243	0.04184	0.0103	0.0103

Angle Resolution Histograms

3D Architecture

Loss Function

- Osine Distance: $\min(1 + \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|}, 1 \frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\| \cdot \|\mathbf{b}\|})$
- Angle resolution (angle difference) in radians/degrees: arccos(a·b | || a || · || b ||)

Training

- o 1000 epochs
- Models Trained
 - Event RegCNN
 - Input: 3D full event pixel map
 - Output: primary electron/muon prong direction
 - Prong RegCNN
 - Input: 3D prong pixel map
 - Output: electron/muon prong direction

3D Pixel Maps Visualization

- Each sample is a 100x100x100 volume
 - each hit has a 3D coordinate

NuECC

NuMuCC

NuECC Prong Direction Regression Resolution Histogram

- 3D RegCNN outperforms Standard method on NuECC
 - Also better than 2D RegCNN

NuECC - Prong Direction Regression Error by Total Energy

NuMuCC - Prong Direction Regression Resolution Histogram

3D RegCNN outperforms Standard method on NuMuCC

NuMuCC - Prong Direction Regression Error by Total Energy

Summary

- 3D RegCNN provides better performance than 2D RegCNN
 - Better understands original 3D geomeries in data
 - Consumes more GPU memory

NuECC

- Outperformed standard method with full-event CNN
- Outperformed standard method further with prong-only CNN
- Demonstrating we might not need prong clustering

NuMuCC

- Outperformed standard method with full-event CNN
- Outperformed standard method further with prong-only CNN
- Demonstrating we might not need prong clustering

Future Work

- Exploring other CNN-based architectures
 - Inception Networks
- Hyperparameter Optimization
 - Using Hyperparameter Optimization libraries, such as Sherpa, to further improve the training test and performance
- Sparse 3D CNN
 - Lighten the computation burden of 3D CNN

Thank you!