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Introduction

e Motivations

o The deep-learning based particle energy, vertices and momentum (energy+direction)
reconstruction are necessary for a full Al based event reconstruction chain.
o Combining the particle mass with its kinetic energy and direction, a final state particle’s

4-momentum can be obtained

e Goals

o Reconstructing the neutrino energy (first version done), neutrino vertex (first version done),

particle kinetic energy (done) and direction (this talk) for NUE and NuMu CC
e This talk

o Use the prong pixel map and event pixel map data with true particle tags to reconstruct:
m Direction for NuE and NuMu CC




Direction Reconstruction
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2D Architecture
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e Loss Function

o Cosine Distance: min(1 + "a" "b"’ ~ al- ||b||)

o Angle resolution (angle dlfference) in

radians/degrees: arccos( ||a|| ||b|| ) ResNet-14 ResNet-14 ResNet-14

e Models Trained
o Event RegCNN

m Input: 3 2D full event pixel maps
m  Output: primary electron/muon prong
direction
o Prong RegCNN Fully Connected
m Input: 3 2D prong pixel maps

m  Output: electron/muon prong direction

Fully Connected

3D Direction




2D Pixel Maps Visualization

Each sample contains 3 401x281 2D images (3 perspectives

NuECC

2D NuECC Full-event Pixel Map 2D NuUECC Prong Pixel Map
View 0 View 1

NuMuCC

2D NuMuCC Full-event Pixel Map 2D NuMuCC Prong Pixel Map
View 0 View 1 View 2 View 0 View 1 View 2




Training Results

2D RegCNN performs better on full-event pixel maps than prong-only pixel maps

o  Outperformed Standard method on NUECC pixel maps

o  Worse than Standard method on NuMuCC pixel maps

m Overfitted to the training data

Training Loss | Validation Loss

Standard Training Loss

Standard Validation Loss

NueCcC 0.04831 0.05204 0.2220 0.2220
NuMuCC | 0.00243 0.04184 0.0103 0.0103
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3D Architecture

Loss Function
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Training
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Cosine Distance: min(1 +

IIaII IIbII T all IIbII)

Angle resolution (angle dlfference) in

radians/degrees: arccos(

IIaII IIbII )

1000 epochs

Models Trained
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Event RegCNN

Input: 3D full event pixel map
Output: primary electron/muon prong

direction

Prong RegCNN

Input: 3D prong pixel map

Output: electron/muon prong direction

3D Volume

3D ResNet-14

Fully Connected

Fully Connected
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3D Pixel Maps Visualization

Each sample is a 100x100x100 volume

o each hit has a 3D coordinate

3D NuECC Full-event Pixel Map
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NUuECC Prong Direction Regression Resolution

Histogram
3D RegCNN outperforms Standard method on NUECC

(@)

Also better than 2D RegCNN

# of events
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NUuECC - Prong Direction Regression Error by Total

Energy
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NuMuCC - Prong Direction Regression Resolution

Histogram
e 3D RegCNN outperforms Standard method on NuMuCC
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NuMuCC - Prong Direction Regression Error by
Total Energy
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Summary

e 3D RegCNN provides better performance than 2D RegCNN

o Better understands original 3D geomeries in data

o Consumes more GPU memory
e NuECC

o Outperformed standard method with full-event CNN
o Outperformed standard method further with prong-only CNN
o Demonstrating we might not need prong clustering

e NuMuCC

o Outperformed standard method with full-event CNN
o Outperformed standard method further with prong-only CNN

o Demonstrating we might not need prong clustering



Future Work

e Exploring other CNN-based architectures
o Inception Networks
e Hyperparameter Optimization

o Using Hyperparameter Optimization libraries, such as Sherpa, to further improve the training

test and performance
e Sparse 3D CNN
o Lighten the computation burden of 3D CNN



Thank you!



