

ν energy reconstruction based on Pandora And Interface for RegCNN

DUNE Reconstruction Workshop

Wenjie Wu

University of California, Irvine

Sept. 17, 2020

Motivation

- ► UCI group is developing Convolutional Neural Networks for neutrino energy reconstruction
 - Both ν_e and ν_μ energy can be reconstructed by CNN models
- ➤ In order to make "apple to apple" comparisons, we also reconstructed neutrino energy by the traditional method (kinematics-based method, <u>DUNE-doc-2278</u> by Nick Grant et al.)
 - Some preliminary results show that CNN models can outperform the traditional method for both ν_e and ν_μ energy reconstruction (*DUNE-doc-13885* by Ilsoo Seong et al.)
 - The traditional method relies on reconstructed showers and tracks. Currently, default track and shower results come from *pmtrack* and *emshower* module
 - pandoraTrack and pandoraShower maybe more well-maintained modules for track and shower reconstruction
- > This report basically repeated the procedures in <u>DUNE-doc-2278</u> and focused on ν_{μ} energy reconstruction

Kinematics-based method

$$E_{\nu} = E_{\rm lep}^{\rm cor} + E_{\rm had}^{\rm cor}$$

- > ν_e CC energy: divide event into reconstructed shower with highest charge and hadronic energy
- > ν_{μ} CC energy: divide event into longest reconstructed track and hadronic energy
- Hadronic/Electron energy: electron lifetime (wire-by-wire) and recombination (constant) corrected calorimetric energy

Kinematics-based method

Hadronic E

- Result for contained tracks in the tech note is re-produced
- pmtrack and pandoraTrack have similar performance on contained events

Numu E: energy dependency of energy resolution

Fit a gaussian to the resolution distribution for each energy bin

pandoraTrack tends to have lower Reco. E for all energies, may be further improved by fine tune the calibration parameters

For events with exiting tracks Lepton P

Hadronic E

technote DUNE-doc-2278

- Result for contained tracks in the tech note is re-produced
- There is an obvious tail on the negative side which diminishes the resolution

pmtrack

pandoraTrack

- For large momentum muons, the MCS method fails to calculate the momentum and always give a value smaller than the true momentum
- ➤ Those events will fall into the negative region of the resolution distribution

► If we only interested on events with energies below 10 GeV

- We can achieve comparable resolution as contained events for exiting events with energies smaller than 10 GeV
- pmtrack and pandoraTrack have similar performance

Numu E: energy dependency of energy resolution

► Fit a gaussian to the resolution distribution for each energy bin

Similar performance for pmtrack and pandoraTrack

Interface for RegCNN in LArSoft

- We developed an interface for RegCNN in LArSoft
 - Neural networks for ν_e and ν_μ CC events are implemented

- ► The implementation for 3D CNN is ongoing
 - For direction reconstruction

Summary and prospect

- We evaluated the effect of different track reconstruction methods on the neutrino energy resolution
 - pmtrack and pandoraTrack give similar performance for both contained events and exiting events
 - pandoraTrack may be more well-maintained
- MCS method fails for high energy muon tracks, may need further investigation on this method
- The interface for CNN models for estimating ν_e and ν_μ energy in LArSoft have been implemented
 - The interface for 3D CNN models is currently ongoing

Backup

Calibration: MCS momentum

pmtrack

Calibration: hadronic E with exiting tracks

pmtrack pandoraTrack 0.9 Uncorrected hadronic energy [GeV] Jncorrected hadronic energy [GeV] χ^2 / ndf χ^2 / ndf 4.971 / 12 48.85 / 28 0.8 Intercept 0.089 ± 0.004094 Intercept -0.0195 ± 0.01039 Gradient 0.6179 ± 0.006445 Gradient 0.5781 ± 0.01253 0.7 0.8 0.6 0.6 0.5 0.4 0.4 0.3 0.2 0.2 0.1 0.2 0.6 1.2 1.4 1.6 0.2 0.4 0.6 0.8 1.2 1.6 0.8 0 0 0.4 1.4 True hadronic energy [GeV] True hadronic energy [GeV]