Status of TMD studies

Alexey Vladimirov

Daniel Pitonyak

Regensburg University

Universität Regensburg

Lebanon Valley College

(日) (四) (三) (三)

æ

In last years significant progress in studies of TMD structure has been made. The field is pushed to qualitatively new level

- ▶ TMD evolution, and perturbative computations
- extractions, and global data analysis
- new tools
- ▶ TMD factorization for new processes

AV

- ▶ TMD evolution
- unpolarized TMDs

Daniel Pitonyak

イロト イヨト イヨト イヨト

▶ polarized TMDs

Transverse momentum dependent = TMD

Many other processes

- ▶ TMDs with jets (in jets)
- ▶ TMDs in di-hadron production
- ▶ TMDs in quarkonia production

[many groups]

TMD factorization

In position space properties of TMD are MUCH simpler

 $F(x, \mathbf{b}; \mu, \zeta) = \mathcal{F}.\mathcal{T}.[F(x, \mathbf{k_T}; \mu, \zeta)]$

$$\frac{d\sigma}{d^2\mathbf{q}_T} = \sum_{ff'} H_{ff'}\!\left(\frac{Q}{\mu_Q}\right) \int d^2b \, e^{i(\mathbf{b}\cdot\mathbf{q}_T)} \, R[b;\mu_Q \to (\mu,\zeta)] F_{f\leftarrow h}(x,b;\mu,\zeta) D_{f'\leftarrow h}(z,b;\mu,\zeta)$$

Each data-point is a product (convolution) of three independent universal non-perturbative functions
Each function is responsible for a separate kinematic variable
Rapidity AD = CS kernel: D → Q and b
TMD PDF: F → x and b
TMD FF: D → z and b

Universität Regensburg

4 / 14

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

October 28, 2020

A.Vladimirov

Power corrections

▶ Theory studies:

[Balitsky,Tarasov,17-19],[Ebert,et al,19-20],[Moos,AV,20]

▶ Phenomenological studies:

[Scimemi, AV, 17, 19], [Bacchetta, et al, 19]

$$rac{q_T^2}{Q^2}_{
m DY} \;,\; rac{p_T^2}{z^2Q^2}_{
m SIDIS} \;\lesssim {f 0.2}$$
 - ${f 0.25}$

Perturbative computations TMDs and TMD evolution are perturbative at small-b

Great progress in last 2-3 years

▶ TMD evolution (CS kernel) $N^{3}LO$

・ロト ・日下・・日下

[AV,17; Li,Zhu,17]

▶ unpolarized TMDs at N³LO

[Ebert, et al, 20; Luo, et al, 19]

▶ twist-3/4 computations

table from [Moos,AV,20]

		Twist of	Twist-2	Twist-3	Order of		
Name	Function	leading	distributions	distributions	leading power	Ref.	
		matching	in matching	in matching	coef.function		
unpolarized	$f_1(x, b)$	tw-2	$f_1(x)$	-	N ³ LO (α_s^3)	[21, 22]	
Sivers	$f_{1T}^{\perp}(x,b)$	tw-3	-	T(-x, 0, x)	NLO (α_s^1)	[23]	
helicity	$g_{1L}(x, b)$	tw-2	$g_1(x)$	$T_g(x)$	NLO (α_s^1)	[16, 17]	
worm-gear T	$g_{1T}(x,b)$	tw-2/3	$g_1(x)$	$T_g(x)$	LO (α_s^0)	[13, 14]	
transversity	$h_1(x, b)$	tw-2	$h_1(x)$	$\mathcal{T}_h(x)$	NNLO (α_s^2)	[19]	
Boer-Mulders	$h_1^{\perp}(x, b)$	tw-3	-	$\delta T_{\epsilon}(-x,0,x)$	LO (α_s^0)	[14]	
worm-gear L	$h_{1L}^{\perp}(x, b)$	tw-2/3	$h_1(x)$	$T_h(x)$	LO (α_s^0)	[13, 14]	
pretzelosity	h_{1T}^{\perp}	tw-3/4	-	$\mathcal{T}_h(x)$	LO (α_s^0)	eq.(4.8)	

Universität Regensburg

A.Vladimirov

Numerical implementation

artemide

- ζ -prescription
- ▶ (unpolarized) NNLO+ $N^{3}LL$
- (polarized) lin.pol.gluons (NNLO), transversity (NNLO), Sivers ...
- ▶ Drell-Yan, SIDIS, SSA's, ...

Nanga Parbat: a TMD fitting framework

- ▶ CSS-like
- (unpolarized) NNLO+N³LL (+N³LO)

イロト イヨト イヨト イヨト

▶ Drell-Yan

A.Vladimirov

October 28, 2020 7 / 14

New global extractions = SV19, Pavia19

[Scimemi, AV, 1912.06532] [Bacchetta, et al, 1912.07550]

(Do) We know unpolarized TMDs! (?)

A.Vladimirov

artemide

October 28, 2020 9 / 14

TMDs meet PDFs

$$F(x,b;\mu,\zeta) \simeq \int_{x}^{1} \frac{dy}{y} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right] + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right) + \alpha_{s}^{2}...\right)}_{\text{known up to N}^{3}\text{LO}} f_{1}\left(\frac{x}{y},\mu\right) + b^{2}...$$

$$\frac{1}{\sqrt{y}} \underbrace{\left(\delta(1-y) + \alpha_{s} \left[p(x)\ln\left(\mu^{2}b^{2}\right) + ...\right)}_{\text{known up to N}^{3}} + \alpha_{s}$$

A.Vladimirov

artemide

October 28, 2020 10 / 14

Non-perturbative TMD evolution \Leftrightarrow Collins-Soper kernel

- Strong universality: SIDIS, DY, Sivers Asym.
- Obvious disagreement!
- No data that could fix $b > 1.5 \text{GeV}^{-1}$.

Non-perturbative TMD evolution \Leftrightarrow Collins-Soper kernel

Huge reduction of uncertainties for CS-kernelLarge reduction for TMDFF and TMDPDF

Conclusion: unpolarized TMDs

- ▶ A lot of new works in theory
- ▶ Principally new level of fits and extractions (SV19, Pavia19)
- ▶ Joined non-contradictory fits of Drell-Yan and SIDIS

Plenty of direction to investigate

- ▶ New ways to measure TMDs
- Incorporation of TMD framework into global QCD picture
- Lattice
- ▶ Interpretation

New data

- ▶ (close future) LHC, Compass, RHIC, JLAB 12GeV
- ▶ (distant future) EIC

This is only unpolarized sector $\mathbf{Polarized} \rightarrow$

イロト イヨト イヨト イヨト

A	V I	ad	lın	n n	01