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Consider electron - hadron collisions in DIS regime

Detect a pion in the final state
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CURRENT REGION FACTORIZATION
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➤ Libby-Sterman analysis 
(Collins 2011 Ch.5) 
suggests that classical 
trajectories dominate 

➤ Produced hadrons are 
close in rapidity to the 
fragmenting quark 
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Figure 1: Lowest order SIDIS graphs corresponding to (a) the current region (b) the target region and (c) the central (soft) region. The faded zigzag lines represent
non-perturbative and other interactions (e.g. hadronization) between the outgoing parton and the target jet.
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Figure 2: Simple parton-model graph for SIDIS with detected hadron in
current-fragmentation region.

model graph get converted into attachments to the Wilson lines
in the operators defining parton densities, fragmentation func-
tions, etc., after appropriate approximations in the proof of fac-
torization.

While the elementary formulation from Fig. 2 is a useful
starting point that captures the general structure of factorization,
detailed analyses of the limits of specific factorization treat-
ments require a more careful account of the full picture, includ-
ing soft gluons, hadronization, parton showering, and higher-
order corrections. A fuller picture might include, for example,
string-like fragmentation [7, 8]. Such e↵ects are relevant to this
paper since we are interested in the boundaries between regions.

The regions associated with the three graphs in Fig. 1 are
defined in terms of the kinematics of the produced hadron, and
each region in principle comes with its own specific factoriza-
tion theorem. The accuracy of a factorization treatment con-
cerns the precision with which its various approximations deal
with its design region. In all cases, we are concerned with Q2

made large, Q2 � ⇤2
QCD, with fixed xbj.

We summarize the theoretical status of each of the rapidity
regions at small PhT as follows:

1. Current Fragmentation Region: (Fig. 1(a)) This region
has a fully developed TMD factorization treatment [1–
6], with TMD parton densities and TMD fragmentation
functions. It applies when Q is made large, Q � ⇤QCD,
at fixed xbj, with large enough zh, and with small PhT.
Since it applies to a well-defined limiting case, we will
ask questions about its accuracy for non-asymptotic kine-
matics.

2. Target Fragmentation Region: (Fig. 1(b)) This region is
described in terms of fracture functions. [9–14]. More

precisely, given our interest in the cross section di↵eren-
tial in PhT, it is described in terms of extended fraction
functions [10, 11], especially those that are TMD in the
quark momentum [14]. The (extended) fracture function
formalism applies to the case that the detected hadron’s
momentum is collinear to the target, so it is also possible
to ask well-defined questions about the accuracy of target
region approximations and their kinematical range of ap-
plicability, though we will not perform such an analysis
specifically here.

3. Central (or soft) Fragmentation Region: (Fig. 1(c)) This
region refers to the case that the produced hadron rapid-
ity is much less than that of the target, but much greater
than that of the outgoing quark (or current jet). We ex-
pect that a factorization theorem for the central fragmen-
tation region is possible, although we know of very little
work on this topic. With the soft factor of TMD factor-
ization in mind, we expect the non-perturbative functions
associated with the soft region to have broadly universal
properties.

An important point is that the current and target fragmenta-
tion regions each overlap with the central fragmentation region.
For example, when the hadron rapidity yh is substantially nega-
tive but by much less than the highest values, both factorization
for the current fragmentation region and factorization for the
central region are valid to useful accuracy.

Thus once factorization for central region has been formu-
lated, it has the potential to unify the full range of zh. With-
out a fully developed central fragmentation function factoriza-
tion theorem, it is probably not possible to address the overlap
of di↵erent regions. We hope that our analysis will motivate
greater attention to central fragmentation and its theoretical de-
velopment.

A unified description with optimal accuracy requires match-
ing of the factorization properties of the individual regions.
This is similar to but more general than the situation for
the transverse-momentum distribution in the Drell-Yan pro-
cess, where matching of TMD and collinear factorization is
needed. [15] Naturally, for SIDIS treated over all PhT, we will
also need a matching of collinear factorization with the com-
bination of matched TMD factorizations for the three low-PhT
regions.
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Fresh look:
Define ratios of kinematical variables and identify regions 
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� � u d ū � d̄ (504)
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Figure 8: Sketch, not to-scale, of kinematical regions of SIDIS in terms of the produced
hadron’s Breit frame rapidity and transverse momentum. In each region, the type of sup-
pression factors that give factorization are shown. (The exact size and shape of each region
may be very different from what is shown and depends on quantities like Q and the hadron
masses.) In the Breit frame, according to Eq. (9.7), partons in the handbag configura-
tion are centered on y ⇡ 0 if �k2

i ⇡ k2
f = O

�
m2

�
. The shaded regions in the sketch are

shifted somewhat toward the target rapidity y
P,b (the vertical dashed line) to account for

the behavior of Eq. (9.1) when zN and xN are small.

R1 ⇡ 0.8 for kaons. If R1 ⇡ 0.8 is taken to be large, then confidence that one is in the
current region deteriorates. The flavor of the final state hadron has little effect on the
transverse momentum hardness, R2, from Eq. (8.16). From Fig. 11 (a) and Fig. 11 (c) flavor
dependence is only noticeable at low Q and even then the effect is small. To summarize,
the produced hadron mass affects collinearity R1 significantly, but does not appear to be a
primary factor in determining transverse hardness R2.

Within a specific example, collinearity R1 and transverse hardness R2 have helped us
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T

region where presumably higher order pQCD corrections are relevant, while small
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that quantities like |k2
i | and |k2

f | are small, and much of the discussion in this section will
be about addressing the question of what is meant by “small.” So to summarize, “partonic"
dashed lines represent the flow of a momentum with small invariant energy. In practical
situations, they will often turn out to refer to actual quark and/or gluon lines, but they do
not need to generally.

The partonic subprocess in Fig. 3 is marked off in a blue box. A black dot indicates the
parton we associate with an observed hadron. The momentum ki is the incoming struck
parton momentum, and there is at least one hadronizing parton kf . The kX momentum
labels the total momentum of all other unobserved partons combined. Outside the box
in Fig. 3, the position of the hadron implies a current region picture, though an analo-
gous picture of course applies to the target region case. We ask questions about partonic
regions in the context of the steps needed to factorize graphical structure in a manner
consistent with particular partonic pictures. Our general view of factorization is based on
that of Collins [11, 33] and collaborators, though the same statements apply to most other
approaches.

We are interested in the kinematics of the ki + q ! kf + k
X

subprocess and how
closely it matches the overall P + q ! PB + X process under very general assumptions.
Specific realizations of the partonic subprocess, each of which can contribute to a different
kinematical region, are shown in Fig. 4. We will analyze the subprocess in the Breit frame
and write

kb
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x̂N

p
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,
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i,b,T)

p
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,ki,b,T

!
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. (8.1)

Hats always indicate a partonic kinematical variable, whereas ⇠ and ⇣ are momentum
fractions (see below). We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (8.2)
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It will also be useful to define a momentum variable

k ⌘ kf � q . (8.8)

It is sometimes useful to have k in terms of k2
X

instead of ẑN. For example, in the special
case that k2

i = k2
f = k2

i,b,T = �k2
T = 0
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◆
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◆
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On the second line, the "· · ·" represents higher powers in an expansion in small q2T/Q2 and
k2
X/Q2. When q2T/Q2 ! 0 and k2

X/Q2 ! 0, the kinematics of the struck parton approach
the kinematics of TMD factorization, or the handbag contribution in collinear factorization,
with the errors in each component proportional to q2T/Q2.

The most basic of partonic approximations is that the masses and off-shellness of par-
tons is small relative to the hard scale:

k2
i /Q2 ! 0 k2

f /Q2 ! 0 . (8.12)

On top of these, other approximations are normally needed. For instance, in the current
region kf is aligned with the final state hadron and

kf · PB ! 0 . (8.13)

Beyond these, still further approximations apply to different specific partonic subprocesses.
First, in the 2 ! 1 process of Fig. 4(a), ki ! k, and the 1/Q2-suppressed terms in equations
like Eqs. (8.9)–(8.11) are dropped. For a hard 2 ! 2 process shown in Fig. 4(b), |k2|⇠ Q2

while k2
X/Q2 ! 0. If both |k2| and k2

X are large, then at least three partons (e.g., Fig. 4(c))
are ejected at wide angles from the hard collision. For fixed xN, zN, Q2, and PB,T, only
certain ki and kf are consistent with any given picture in Fig. 4.

For example, say we wish to interpret a particular SIDIS region with a partonic con-
figuration like Fig. 4(a), corresponding to the current fragmentation region. For a partonic
description to hold at all, a minimum requirement is that ratios like Eq. (8.12) are very
small. So define a ratio

General Hardness Ratio = R0 ⌘ max
✓����

k2
i

Q2

���� ,

����
k2
f

Q2

���� ,

����
�k2

T

Q2

����

◆
. (8.14)

and consider regions of Q where R0 is less than a certain numerical size for a given set of
estimates for k2

i and k2
f . Next, since scattering is assumed to be in the current region in

Fig. 4(a), the ratio

Collinearity = R1 ⌘ PB · kf
PB · ki

, (8.15)
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and consider regions of Q where R0 is less than a certain numerical size for a given set of
estimates for k2

i and k2
f . Next, since scattering is assumed to be in the current region in

Fig. 4(a), the ratio

Collinearity = R1 ⌘ PB · kf
PB · ki

, (8.15)
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must also be small. See Ref. [34] for more discussion – R1 corresponds to R from that
reference. The expression for R1 in terms of the variables in Eq. (5.1) and Eq. (8.1) is
straightforward, but slightly cumbersome and not instructive, so we will not write it ex-
plicitly here.

The 2 ! 1 partonic kinematics only apply if k2/Q2 ⇡ 0, an approximation that fails if
transverse momentum is too large. So define another ratio,

Transverse Hardness Ratio = R2 ⌘ |k2|
Q2

. (8.16)

R2 is small for 2 ! 1 partonic kinematics. From Eq. (8.1),

R2 =

�����(1 � ẑN) � ẑN
q2T
Q2

�
(1 � ẑN)k2

f

Q2ẑN
� �k2

T

ẑNQ2
+

2qT · �kT
Q2

���� ⇡ (1� ẑ
N

)+ ẑ
N

q2T
Q2

. (8.17)

Note that this suggests qT from Eq. (5.3) as the most useful transverse momentum for
quantifying transverse momentum hardness relative to Q; if q2T/Q2 ⇠ 1, then R2 ⇠ 1 for
both large and small ẑ

N

while if q2T/Q2 ⌧ 1 and ⇣ ⇠ zN (as in the current fragmentation
region with TMDs) then R2 ⌧ 1 (see also discussion in Ref. [35]).

If the SIDIS region corresponds to 2 ! 2 hard partonic kinematics, then R2 must
be large (⇠ 1). However, then the ratio k2

X/Q2 must be small since there is only one
unobserved parton, and its invariant mass must be small relative to hard scales to qualify
as a single massless parton. (See Fig. 4(b).) If k2 is a massless on-shell quark or gluon,
then k2

2 = 0 and this places a strong kinematical constraint on relationship between the
momentum fractions ⇠ and ⇣. See, for example, Eq.(83) of [17]. So define one more ratio,

Spectator Virtuality Ratio = R3 ⌘ |k2
X|

Q2
. (8.18)

Large R2, but small R3, corresponds to 2 ! 2 parton kinematics. Large R2 and large R3

corresponds to partonic scattering with three or more final state partons, such as Fig. 4(c).
To see that the size of R2, Eq. (8.17), reflects the importance of transverse momentum,

we repeat an argument very similar to that on page 4 of [35]. Note that Feynman graphs
corresponding to the inside of the box in Fig. 4 contain propagator denominators of the
form

1

k2 + O (m2)
,

1

k2 + O (Q2)
, (8.19)

where the denominators with +O
�
Q2

�
arise in corrections to the virtual photon vertex or

internal propagators from the emission of wide-angle kX partons. Note also that k · q ⇠
q · P = O

�
Q2

�
. The possible approximations to these denominators are representative of

the approximations needed in derivations of factorization. If |k2|⇠ Q2, the O
�
m2

�
terms

in the denominators are negligible so that the part of the graph inside the box can be
calculated in perturbative QCD using both Q2 and k2 as equally good hard scales. In this
case, and k2

X ⌧ Q2, then Fig. 4(b) becomes the relevant picture. However, if |k2|⌧ Q2,
the O

�
m2

�
terms in the first of the denominators in Eq. (8.19) must be kept. Then, a

|k2|/Q2 ⌧ 1 approximation in the second denominator can be used, and it is this type of
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Should be small for partonic description to hold, 
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It will also be useful to define a momentum variable
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On the second line, the "· · ·" represents higher powers in an expansion in small q2T/Q2 and
k2
X/Q2. When q2T/Q2 ! 0 and k2

X/Q2 ! 0, the kinematics of the struck parton approach
the kinematics of TMD factorization, or the handbag contribution in collinear factorization,
with the errors in each component proportional to q2T/Q2.

The most basic of partonic approximations is that the masses and off-shellness of par-
tons is small relative to the hard scale:

k2
i /Q2 ! 0 k2

f /Q2 ! 0 . (8.12)

On top of these, other approximations are normally needed. For instance, in the current
region kf is aligned with the final state hadron and

kf · PB ! 0 . (8.13)

Beyond these, still further approximations apply to different specific partonic subprocesses.
First, in the 2 ! 1 process of Fig. 4(a), ki ! k, and the 1/Q2-suppressed terms in equations
like Eqs. (8.9)–(8.11) are dropped. For a hard 2 ! 2 process shown in Fig. 4(b), |k2|⇠ Q2

while k2
X/Q2 ! 0. If both |k2| and k2

X are large, then at least three partons (e.g., Fig. 4(c))
are ejected at wide angles from the hard collision. For fixed xN, zN, Q2, and PB,T, only
certain ki and kf are consistent with any given picture in Fig. 4.

For example, say we wish to interpret a particular SIDIS region with a partonic con-
figuration like Fig. 4(a), corresponding to the current fragmentation region. For a partonic
description to hold at all, a minimum requirement is that ratios like Eq. (8.12) are very
small. So define a ratio
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and consider regions of Q where R0 is less than a certain numerical size for a given set of
estimates for k2

i and k2
f . Next, since scattering is assumed to be in the current region in

Fig. 4(a), the ratio

Collinearity = R1 ⌘ PB · kf
PB · ki

, (8.15)

– 19 –

q

ki

kf

(a)

q

ki

kf

k2

q

ki

kf

k2

k3

(b) (c)

Figure 4: Examples of hard kinematics. Graph (a) represents handbag kinematics. Graph
(b) is 2 ! 2 kinematics, which can represent, for instance, the first non-vanishing contribu-
tion when we specialize to massless pQCD graphs at large transverse momentum. Graph
(c) is 2 ! 3 kinematics. We remark that in general, in Graphs (a), (b) and(c) the dashed
lines may represent groups of particles, such as those making up a gauge link.

In the hadron frame, Eq. (5.6) gives

kf,H,T = �kT + Power Suppressed , (8.3)

so �kT is good for characterizing an intrinsic relative transverse momentum in the large Q

limit; in Eq. (8.1) intrinsic transverse momentum is �kT when qT = 0. For nearly on-shell
partons,

|k2
i |, |k2

f |= O
�
m2

�
. (8.4)

In the limit where m ⌧ Q and xBj, zh, qT are fixed, the outgoing parton is exactly aligned
with the observed hadron so long as

�k2
T = O

�
m2

�
. (8.5)

We have defined the Breit frame momentum fractions and Breit frame x̂N, ẑN analogous to
xN and xBj:
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⇠
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. (8.6)

For fixed x̂N, ẑN and q2T, k2
X is calculable from momentum conservation,

k2
X = (ki + q � kf)

2 . (8.7)
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Figure 4: Examples of hard kinematics. Graph (a) represents handbag kinematics. Graph
(b) is 2 ! 2 kinematics, which can represent, for instance, the first non-vanishing contribu-
tion when we specialize to massless pQCD graphs at large transverse momentum. Graph
(c) is 2 ! 3 kinematics. We remark that in general, in Graphs (a), (b) and(c) the dashed
lines may represent groups of particles, such as those making up a gauge link.

In the hadron frame, Eq. (5.6) gives

kf,H,T = �kT + Power Suppressed , (8.3)

so �kT is good for characterizing an intrinsic relative transverse momentum in the large Q

limit; in Eq. (8.1) intrinsic transverse momentum is �kT when qT = 0. For nearly on-shell
partons,

|k2
i |, |k2

f |= O
�
m2

�
. (8.4)

In the limit where m ⌧ Q and xBj, zh, qT are fixed, the outgoing parton is exactly aligned
with the observed hadron so long as

�k2
T = O

�
m2

�
. (8.5)

We have defined the Breit frame momentum fractions and Breit frame x̂N, ẑN analogous to
xN and xBj:

k+
i ⌘ ⇠P+

b , P�
B,b ⌘ ⇣k�

f , x̂N ⌘ �
q+b
k+
i,b

=
xN

⇠
, ẑN ⌘

k�
f,b

q�b
=

zN
⇣

. (8.6)

For fixed x̂N, ẑN and q2T, k2
X is calculable from momentum conservation,

k2
X = (ki + q � kf)

2 . (8.7)
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Figure 3: Momentum labeling in the partonic subprocess.

that quantities like |k2
i | and |k2

f | are small, and much of the discussion in this section will
be about addressing the question of what is meant by “small.” So to summarize, “partonic"
dashed lines represent the flow of a momentum with small invariant energy. In practical
situations, they will often turn out to refer to actual quark and/or gluon lines, but they do
not need to generally.

The partonic subprocess in Fig. 3 is marked off in a blue box. A black dot indicates the
parton we associate with an observed hadron. The momentum ki is the incoming struck
parton momentum, and there is at least one hadronizing parton kf . The kX momentum
labels the total momentum of all other unobserved partons combined. Outside the box
in Fig. 3, the position of the hadron implies a current region picture, though an analo-
gous picture of course applies to the target region case. We ask questions about partonic
regions in the context of the steps needed to factorize graphical structure in a manner
consistent with particular partonic pictures. Our general view of factorization is based on
that of Collins [11, 33] and collaborators, though the same statements apply to most other
approaches.

We are interested in the kinematics of the ki + q ! kf + k
X

subprocess and how
closely it matches the overall P + q ! PB + X process under very general assumptions.
Specific realizations of the partonic subprocess, each of which can contribute to a different
kinematical region, are shown in Fig. 4. We will analyze the subprocess in the Breit frame
and write

kb
i =

 
Q

x̂N

p
2
,
x̂N(k2

i + k2
i,b,T)

p
2Q

,ki,b,T

!
, kb

f =

 
k2
f,b,T + k2

fp
2ẑNQ

,
ẑNQp

2
,kf,b,T

!
. (8.1)

Hats always indicate a partonic kinematical variable, whereas ⇠ and ⇣ are momentum
fractions (see below). We will write the transverse momentum as

kf,b,T = �ẑNqT + �kT . (8.2)
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Figure 5: A hadron produced in the target region – see Eq. (10.1). Hadrons produced
from the hard part are not observed.

10 Target Remnant Hadrons

If, in contrast to the discussion in Sec. 8, the hadron is in the target fragmentation region
(see Fig. 5), then

PB · P ⌧ Q2 , (10.1)

In the target region, zh is no longer as useful for parameterizing the process since it no longer
necessarily describes a momentum fraction – see Eq. (5.4) and note that the quantity under
the square root diverges as zh ! 0. In terms of xh, zN is:

zN =

q
4x2

Bj(M
2
B/Q2)(1 � q2T/Q2) + x2

h � xh

2xBj(1 � q2T/Q2)

=
M2

BxBj

Q2xh
�

M4
Bx3

Bj

�
Q2 � q2T

�

Q6x3
h

+ O

 
M6

B

�
Q2 � q2T

�2

Q10

!
, (10.2)

where we have kept the solution that gives exactly zN = 0 when PB is exactly massless and
collinear to P . Now,

PB·P =
MMB,T

2

�
e�y + e��y

�
=

M2xBj

�
M2

B + q2Tz2N
�

QzN

⇣q
4M2x2

Bj + Q2 + Q
⌘+

QzN

⇣q
4M2x2

Bj + Q2 + Q
⌘

4xBj
.

(10.3)
Equation (10.3) is no larger than O

�
m2
�

if zN ⇠ m2/Q2 and q2Tz2N/Q2 ⌧ 1. So for the
target region, Eq. (10.1) with Eqs. (10.2)–(10.3) means

zN = ⇥

✓
m2

Q2

◆
. (10.4)

The “Big ⇥” symbol is used because the first term in Eq. (10.3) puts a lower limit on
acceptable sizes for zN. In other words, the target region criterion fails both when zN ⌧
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�9

REGIONS IN SIDIS AND RATIOS

�9

Boglione et al, 1611.10329

➤ Define ratios

Boglione et al, 1904.12882

Ratios depend on unknown parton 
momenta. Ho can we define and use 
them?

Current study

➤ Use a Monte Carlo* with 
parton momenta 

➤ Sample experimental bins 
for ratios 

* by saying Monte Carlo we do not intend Pythia!

R0

R1

R2

Box that defines
appropriate values
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EIC: CURRENT REGION

�10

Current study

Relatively large xBj, zh, Q



THEORETICAL AND PHENOMENOLOGICAL DEVELOPMENT

�11

We have studies regions in SIDIS and identified TMD, 
Target, Soft and Hard regions
New tool to guide our intuition is provided
Further phenomenological and theoretical studies to follow


