(Our own) thoughts on TMDs

Valerio Bertone
IRFU, CEA, Uníversité Paris-Saclay

Giuseppe Bozzi

Università degli studí dí Pavia

October 28, 2020, Snowmass EF06 TMD jamboree

Outline

Pavel's e-mail questions:

1. What will be known about the TMD structure of hadrons in $\mathbf{5 , 1 0}$, and $\mathbf{1 5}$ years from now?
2. How will our own research contribute to the progress in understanding of TMDs?
3. What critical physics questions must be solved to make progress?
4. What experimental measurements can provide incisive information?
5. What will be necessary to extend TMD formalisms to new scattering processes?
6. How will we understand the interplay of perturbative and non-perturbative QCD effects?
7. How can the $\mathbf{Q C D}$ community help with addressing these questions?

- Perhaps the hardest question, our answer is "we just don't know".
- We can try to guess based on our view of the current research directions.

Next 5 years:

- establishment of TMD precision determinations,
- better exploitation of the LHC data (it started less than two years ago),
- better separation between non-perturbative evolution and "intrinsic k_{T} ",
- TMD flavour dependence.
- Next 10 year:
- gluon TMD?
- precision physics with polarised TMDs?
- Next 15 years:
- the EIC will kick in and will surely impact TMDs, hard to foresee how though.
- great potential to unravel hadron structure (TMD : EIC $\xlongequal{\underline{2}} \mathrm{PDF}:$ HERA).

Nuclear TMDs?

2) Our own research

- A fit of TMD PDFs on Drell-Yan world data up N33LL accuracy:

Now working on SIDIS data and thus TMD FFs.

3) Critical physics questions

- SIDIS data from HERMES and COMPASS case is a still-standing issue:
- at high $p_{\mathrm{T}} \ldots$

3) Critical physics questions

- SIDIS data from HERMES and COMPASS case is a still-standing issue:
- ... and at low $p_{\text {T }}$.

3) Critical physics questions

- SIDIS data from HERMES and COMPASS case is a still-standing issue:
no problem found by Scimemi and Vladimirov at low $p_{\text {T. }}$ [|9|2.06532]

3) Critical physics questions

- Matching between TMD and collinear factorisations:
[Bizon et al., I805.05916]

- Well-understood procedure at the LHC energies where usually $Q \gg \Lambda_{\mathrm{QCD}}$: - clear separation of TMD and collinear, non-perturbative confined to very low q_{T}.
- Not so much so for current (and future) SIDIS data due to smaller Q :
need to identify and study the transition region.

4) Experimental measurements

- TMD factorisation applies for $q_{\mathrm{T}} \ll Q_{\text {: }}$
- if $q_{\mathrm{T}} \gg \Lambda_{\mathrm{CCD}}$, TMDs \sim collinear distributions (times a perturbative matching),
- the region $q_{\mathrm{T}} \simeq \Lambda_{\mathrm{QCD}}$ is relevant for hadron structure, no matter how large Q
- As Q increases the cross section drops and low q_{T} becomes hard to access.

Precise data from the LHC and Tevatron

Less precise data from the LHC that extends to low q_{T} Some poor old fixed-target data

Low-qT data in this region absent but would be very

Is $q_{\mathrm{T}} \simeq \Lambda_{\mathrm{QCD}}$ attainable with welcome! good precision here?

4) Experimental measurements

- Observables other than the q_{T} of the vector boson can be considered.
- An example that we are currently considering is φ^{*} :
$\phi_{\eta}^{*}=\tan \left(\frac{\pi-\Delta \phi_{\ell}}{2}\right) \sqrt{1-\tanh ^{2}\left(\frac{\Delta \eta_{\ell}}{2}\right)}$
[Banfi et al., I 009. I 580]
- Experimentally very clean because it only involves angles.

- Since small φ^{*} is mapped onto small q_{T}, this observable is expected to carry important information on hadron structure.

5) Extend TMD formalisms

- TMD factorisation has been proven for:
- inclusive Drell-Yan production,
- semi-inclusive deep-inelastic scattering,
- inclusive $e^{+} e^{-}$annihilation into two hadrons.
- Generalised TMD factorisation breaking has instead been proven for:

$$
H_{1}+H_{2} \rightarrow H_{3}+H_{4}+X \begin{aligned}
& {\left[\begin{array}{l}
{[\text { Rogers and Mulders, } 1001.2977]} \\
{[\text { Collins and Qui, 0705.2141] }} \\
{[\text { Collins, 0708.44| }]}
\end{array}\right.}
\end{aligned}
$$

- How about?

$$
\begin{gathered}
H_{1}+H_{2} \rightarrow H_{3}+\gamma^{*} / Z+X \\
e+H_{1} \rightarrow H_{2}+H_{3}+X
\end{gathered}
$$

- Understanding factorisation breaking effects is important to exploit data.
e.g. [Echevarria, I 907.06494]
- important for the gluon TMD,
- appropriate factorisation theorems are necessary.

6) Interplay of Pert. and NP

- Understanding of theoretical uncertainties is crucial to achieve a reliable extraction of the non-perturbative components from data.

7) QGD community

- Let us behave as a coherent community:
- more communication between low- and high-energy communities,

- more communication between collinear and TMD communities,
- much to be learned on the hadron structure from the GPD approach.

TMDs
(3D in momentum)

GPDs
(3D in position)

(ID in momentum)

