Transverse-Momentum-Dependent Parton Distributions from Lattice QCD

Snowmass 2021 EF06/07 Meeting-TMD Jamboree, Oct. 28, 2020

Yong Zhao
Brookhaven National Laboratory

Collaboration:

Markus Ebert (MIT \& MPP),
Jian Liang (U. Kentucky),
Yizhuang Liu (T.-D. Lee Institute \& U. Regensburg),
Phiala Shanahan (MIT),
lain Stewart (MIT),
Michael Wagman (FNAL),
Wei Wang (SJTU),
Yong Zhao (BNL)

Nonperturbative inputs for TMD phenomenology

- TMD factorization (for Drell-Yan processes):

$$
\begin{aligned}
\frac{d \sigma}{d Q d Y d^{2} q_{T}} & =\sum_{i, j} H_{i j}(Q, \mu) \int d^{2} b_{T} e^{i \vec{b}_{T} \cdot \vec{q}_{T}} \\
& \times f_{i}^{\mathrm{TMD}}\left(x_{a}, \vec{b}_{T}, \mu, \zeta_{a}\right) f_{j}^{\mathrm{TMD}}\left(x_{b}, \vec{b}_{T}, \mu, \zeta_{b}\right)
\end{aligned}
$$

- TMD evolution:

$$
\begin{aligned}
& f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)=f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu_{0}, \zeta_{0}\right) \\
& \left.\times \exp \left[\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{\mu}^{i}\left(\mu^{\prime}, \zeta_{0}\right)\right] / \begin{array}{c}
\exp \left[\frac{1}{2} \gamma_{\zeta}^{i}\left(\mu, b_{T}\right) \ln \frac{\zeta}{\zeta_{0}}\right] \\
\text { Collins-Soper kernel }
\end{array}\right] \\
& \text { Nonperturbatively unknown } \\
& \text { when } b_{T} \sim 1 / \Lambda_{\mathrm{QCD}} \\
& \uparrow^{\mu} \\
& \sim 2 \mathrm{GeV} \\
& f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)=f_{i}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu_{0}, \zeta_{0}\right) \\
& \times \exp \left[\int_{\mu_{0}}^{\mu} \frac{d \mu^{\prime}}{\mu^{\prime}} \gamma_{\mu}^{i}\left(\mu^{\prime}, \zeta_{0}\right)\right] \int_{\text {Collins-Soper kernel }}^{\exp \left[\frac{1}{\zeta_{0}^{i}} \gamma_{\left(\mu, b_{T}\right) \ln }^{\zeta}\right]} \\
& \text { Nonperturbatively unknown } \\
& \text { when } b_{T} \sim 1 / \Lambda_{\mathrm{QCD}} \\
& \text { LHC, FNAL } \\
& \text { COMPASS, RHIC, HERMES, EIC... }
\end{aligned}
$$

Lattice QCD Calculation of TMDPDFs with Large-Momentum Effective Theory (LaMET)

X. Ji, PRL 110 (2013); SCPMA57 (2014).

- TMDPDF:
 $\times B_{i}\left(x, \vec{b}_{T}, \epsilon, \tau, x P^{+}\right) \Delta_{S}^{i}\left(b_{T}, \epsilon, \tau\right)$

Lorentz boost and $L \rightarrow \infty$

Cannot be related by Lorentz boost

- Quasi-TMDPDF:

$$
\begin{array}{r}
\tilde{f}_{q}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right)=\int \frac{d b^{z}}{2 \pi} e^{i b^{z}\left(x P^{z}\right)} \tilde{Z}_{q}\left(b^{z}, \mu, a\right) \\
\times \tilde{B}^{q}\left(b^{z}, \vec{b}_{T}, a, L, P^{z}\right) / \sqrt{\tilde{S}_{q}\left(b_{T}, a, L\right)}
\end{array}
$$

Lattice QCD Calculation of TMDPDFs

with Large-Momentum Effective Theory (LaMET)

Relationship between TMDPDF and Quasi-TMDPDF:

$$
\begin{aligned}
& \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P^{z}\right)=C_{\mathrm{nS}}^{\mathrm{TMD}}\left(\mu, x P^{z}\right) \sqrt{S_{r}^{q}\left(b_{T}, \mu\right)} \exp \left[\frac{1}{2} \gamma_{\zeta}^{q}\left(\mu, b_{T}\right) \ln \frac{\left(2 x P^{z}\right)^{2}}{\zeta}\right] \\
& b^{z} \sim \frac{1}{P^{z}} \ll b_{T} \ll L \\
& \times f_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, \zeta\right)+\mathcal{O}\left(\frac{b_{T}}{L}, \frac{1}{b_{T} P^{z}}, \frac{1}{P^{z} L}\right) \\
& \text { - Ji, Sun, Xiong and Yuan, PRD91 (2015); } \\
& \text { - Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019); } \\
& \text { - Ebert, Stewart, Y.Z., PRD99 (2019), JHEP09 (2019); } \\
& \text { - Ji, Liu and Liu, Nucl.Phys.B } 955 \text { (2020), 1911.03840; } \\
& \text { Milestones in lattice calculations: : Schaefer and Vladimirov, Phys.Rev.D } 101 \text { (2020); }
\end{aligned}
$$

1. The nonperturbative Collins-Soper kernel;
2. The soft function;
3. The full TMDPDF.

The Non-perturbative Collins-Soper kernel

$$
\begin{aligned}
& \gamma_{\zeta}^{q}\left(\mu, b_{T}\right)= \frac{1}{\ln \left(P_{1}^{z} / P_{2}^{z}\right)} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P_{2}^{z}\right) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{1}^{z}\right)}{C_{\mathrm{ns}}^{\mathrm{TMD}}\left(\mu, x P_{1}^{z}\right) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}\left(x, \vec{b}_{T}, \mu, P_{2}^{z}\right)} \\
& \text { Ji, Sun, Xiong and Yuan, PRD91 (2015); Ebert, Stewart, Y.Z., PRD99 (2019). }
\end{aligned}
$$

First exploratory calculation on a quenched lattice:

- Lattice renormalization and perturbative matching;

Shanahan, Wagman and Y.Z., Phys.Rev.D 101 (2020);
Constantinou, Panagopoulos and Spanoudes, PRD99 (2019);
Ebert, Stewart and Y.Z., JHEP 03 (2020).

- Extraction by direct Fourier transform (FT) or fitting to models.

FT truncation error can be improved with longer Wilson line extension or larger hadron momentum.

Target error:

$$
\lesssim 10 \% \text { for } 0.2 \mathrm{fm}<b_{T}<1 \mathrm{fm}
$$

P. Shanahan, M. Wagman, Y.Z., Phys.Rev.D 102 (2020).

Further application of forming ratios: Ratios of TMDPDFs with different spin structures.

The TMD soft function from lattice QCD

$$
\langle\pi(-P)| j_{1}\left(b_{T}\right) j_{2}(0)|\pi(P)\rangle=S_{q}^{r}\left(b_{T}, \mu\right) H(x, \mu) \otimes \Phi^{\dagger}\left(x, b_{T},-P^{z}\right) \otimes \Phi^{\dagger}\left(x, b_{T}, P^{z}\right)
$$

Ji, Liu and Liu, Nucl.Phys.B 955 (2020), 1911.03840;
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, 2004.03543.

First exploratory calculation on the lattice:

- Dynamical fermions;
- Tree-level matching and no lattice renormalization.

Targets:

- Systematic control: renormalization, operator mixing, perturbative matching and power corrections.

Q.-A. Zhang, et al. (LP Collaboration), 2005.14572.
- $\lesssim 10 \%$ for $0.2 \mathrm{fm}<b_{T}<1 \mathrm{fm}$.

Full TMDPDFs from lattice QCD

- Combination of the lattice calculations of the quasiTMDPDF, Collins-Soper kernel and the soft function.
- Target error:
- $\lesssim 20 \%$ for $0.2 \mathrm{fm}<b_{T}<1 \mathrm{fm}$.
- Complementing global analysis:
- Differentiate models for TMDPDFs;
- Comparison to results from global fits;
- Predictions for certain TMDPDFs of which there is very little data.

