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• TMD factorization (for Drell-Yan processes): 

• TMD evolution:

Nonperturbative inputs for TMD phenomenology
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• TMDPDF:

Lattice QCD Calculation of TMDPDFs
with Large-Momentum Effective Theory (LaMET)
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X. Ji, PRL 110 (2013); SCPMA57 (2014).

• Quasi-TMDPDF:



Relationship between TMDPDF and Quasi-TMDPDF: 

Milestones in lattice calculations: 

1. The nonperturbative Collins-Soper kernel; 

2. The soft function; 

3. The full TMDPDF.

Lattice QCD Calculation of TMDPDFs
with Large-Momentum Effective Theory (LaMET)
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• Ji, Sun, Xiong and Yuan, PRD91 (2015); 
• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019); 
• Ebert, Stewart, Y.Z., PRD99 (2019), JHEP09 (2019); 
• Ji, Liu and Liu, Nucl.Phys.B 955 (2020), 1911.03840; 
• Schaefer and Vladimirov, Phys.Rev.D 101 (2020); 
• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, 2004.03543.



First exploratory calculation on a quenched lattice: 

Target error: 
for ≲ 10 % 0.2 fm < bT < 1 fm

The Non-perturbative Collins-Soper kernel
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Ji, Sun, Xiong and Yuan, PRD91 (2015); Ebert, Stewart, Y.Z., PRD99 (2019).

P. Shanahan, M. Wagman, Y.Z., Phys.Rev.D 102 (2020).

• Lattice renormalization and 
perturbative matching; 

• Extraction by direct Fourier transform 
(FT) or fitting to models.

Shanahan, Wagman and Y.Z., Phys.Rev.D 101 (2020); 
Constantinou, Panagopoulos and Spanoudes, PRD99 (2019); 
Ebert, Stewart and Y.Z., JHEP 03 (2020).

FT truncation error can be improved with longer 
Wilson line extension or larger hadron momentum.

Phiala Shanahan, MIT

• Fully-controlled dynamical results at this precision would already impact 
phenomenology 

• CAUTION: Photoshop overlay of pheno. models with zero-flavour lattice calc
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FIG. 7: Collins-Soper evolution kernel obtained using fits to the renormalized quasi beam functions based on Hermite and
Bernstein polynomial bases (Eqs. (16-17)), computed as described in the text. The background shading density is proportional
to 1/(bTP

z) + bT /⌘, indicating regions of greater and lesser sensitivity to power corrections which are not included in the
uncertainties presented. The black dotted, dashed and solid lines show perturbative results for the 0-flavor Collins-Soper kernel
up to three-loop order [47, 48]. Perturbative results become singular at bT ⇠ 0.25 fm because they reach the Landau pole

associated with ⇤
MS,Nf=0

QCD = 639 MeV.

e↵ects are thus neglected in this work. While a model-
independent result for the Collins-Soper kernel cannot be
achieved from the data presented here, the comparison
between results obtained using the two di↵erent models
considered nevertheless provides some indication of the
severity of the model-dependence, and the quality of fits
to these functional forms not including power corrections
also provides a measure of their importance.

The first functional form which is fit to the MS-
renormalized quasi beam function is

FHerm
N (P z, bzP z; {ak}, �, !, �)

=
NX

k=1
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Z
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dx ei(bzP z)xe�(x�!)2/2�(P zx)�Hk�1(x),

(16)

where Hn(x) is the n-th Hermite polynomial. The fit
parameter ! is taken to be complex, while the other
free parameters are real. Allowing Im(!) 6= 0 allows the
Fourier transform of FHerm

N (P z, bzP z; {ak}, �, !, �) with
respect to bzP z to be complex, and correspondingly en-
ables FHerm

N (P z, bzP z; {ak}, �, !, �) to be an asymmetric
function of bzP z. The real and imaginary parts of the
quasi beam function are symmetric and antisymmetric
functions of bz respectively in the ⌘ ! 1 limit; how-
ever, the numerical results presented in this work show
significant departures from these expectations, particu-
larly for large bT , as shown in Fig. 5(b). The observed
asymmetry could arise from finite-volume e↵ects: e↵ec-
tive field theory calculations [49] have demonstrated that
finite-volume e↵ects for pion matrix elements of non-

local operators with separation ` generically take the
form e�m⇡(L�`). In this work, one therefore expects bz-
dependent finite-volume e↵ects of the form e�m⇡(L�⌘+bz)

as well as additional bz independent finite-volume ef-
fects. In addition, exponential dependence on bz could
arise from an imperfect cancellation between power-law-
divergent lattice artifacts in Bbare

� (bz,~bT , a, ⌘, P z) and

ZMS
O�4�

(µ, bz,~bT , a, ⌘)R̃(bT , bR
T , a, ⌘). Taking Im(!) 6= 0 al-

lows the fit form in Eq. (16) to include exponential depen-
dence on bz and is found to significant improve the quality
of fits to the numerical results with large bT & 0.5 fm.

The second model considered assumes that the Fourier
transform of the quasi beam function has compact sup-
port on the interval 0 < x < 1 [30, 31, 33], which is
expected to become valid for large P z, and takes the
form

FBern
N (P z, bzP z; {ar

n}, �, A, B)

=
N�1X

r=0

ar

Z 1

0
dx ei(bzP z)x xA(1 � x)B(P zx)�Br,N�1(x) ,

(17)

where Br,N�1, for r 2 {0, . . . N � 1} are the N Bern-
stein basis polynomials of degree N � 1 normalized as
in Ref. [50], and asymmetry in bz is accommodated by
taking Im(ar) 6= 0.

Using either functional form, FHerm
N or FBern

N , as a

model for B
MS
�4 , and evaluating Eq. (11) with the tree-

level matching factor CTMD
ns = 1, gives the result �q,MS

⇣ =

8
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e↵ects are thus neglected in this work. While a model-
independent result for the Collins-Soper kernel cannot be
achieved from the data presented here, the comparison
between results obtained using the two di↵erent models
considered nevertheless provides some indication of the
severity of the model-dependence, and the quality of fits
to these functional forms not including power corrections
also provides a measure of their importance.

The first functional form which is fit to the MS-
renormalized quasi beam function is

FHerm
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where Hn(x) is the n-th Hermite polynomial. The fit
parameter ! is taken to be complex, while the other
free parameters are real. Allowing Im(!) 6= 0 allows the
Fourier transform of FHerm

N (P z, bzP z; {ak}, �, !, �) with
respect to bzP z to be complex, and correspondingly en-
ables FHerm

N (P z, bzP z; {ak}, �, !, �) to be an asymmetric
function of bzP z. The real and imaginary parts of the
quasi beam function are symmetric and antisymmetric
functions of bz respectively in the ⌘ ! 1 limit; how-
ever, the numerical results presented in this work show
significant departures from these expectations, particu-
larly for large bT , as shown in Fig. 5(b). The observed
asymmetry could arise from finite-volume e↵ects: e↵ec-
tive field theory calculations [49] have demonstrated that
finite-volume e↵ects for pion matrix elements of non-

local operators with separation ` generically take the
form e�m⇡(L�`). In this work, one therefore expects bz-
dependent finite-volume e↵ects of the form e�m⇡(L�⌘+bz)

as well as additional bz independent finite-volume ef-
fects. In addition, exponential dependence on bz could
arise from an imperfect cancellation between power-law-
divergent lattice artifacts in Bbare
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T , a, ⌘). Taking Im(!) 6= 0 al-

lows the fit form in Eq. (16) to include exponential depen-
dence on bz and is found to significant improve the quality
of fits to the numerical results with large bT & 0.5 fm.

The second model considered assumes that the Fourier
transform of the quasi beam function has compact sup-
port on the interval 0 < x < 1 [30, 31, 33], which is
expected to become valid for large P z, and takes the
form

FBern
N (P z, bzP z; {ar

n}, �, A, B)

=
N�1X

r=0

ar

Z 1

0
dx ei(bzP z)x xA(1 � x)B(P zx)�Br,N�1(x) ,

(17)

where Br,N�1, for r 2 {0, . . . N � 1} are the N Bern-
stein basis polynomials of degree N � 1 normalized as
in Ref. [50], and asymmetry in bz is accommodated by
taking Im(ar) 6= 0.

Using either functional form, FHerm
N or FBern

N , as a

model for B
MS
�4 , and evaluating Eq. (11) with the tree-

level matching factor CTMD
ns = 1, gives the result �q,MS

⇣ =

Further application of forming ratios: Ratios of 
TMDPDFs with different spin structures.

Ebert, Schindler, Stewart, Y.Z., JHEP 09 (2020).



First exploratory calculation on the lattice: 

Targets:

The TMD soft function from lattice QCD
⟨π(−P) j1(bT)j2(0) π(P)⟩ = Sr

q(bT, μ) H(x, μ) ⊗ Φ†(x, bT, − Pz) ⊗ Φ†(x, bT, Pz)

Ji, Liu and Liu, Nucl.Phys.B 955 (2020), 1911.03840; 
X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, 2004.03543.
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TMDWF,
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where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.

Q.-A. Zhang, et al. (LP Collaboration), 2005.14572.

Quasi-TMD distribution amplitude

• Dynamical fermions; 
• Tree-level matching and no lattice 

renormalization.

• Systematic control: renormalization, 
operator mixing, perturbative matching 
and power corrections. 

• for .≲ 10 % 0.2 fm < bT < 1 fm



• Combination of the lattice calculations of the quasi-
TMDPDF, Collins-Soper kernel and the soft function. 

• Target error: 
• for . 

• Complementing global analysis: 

• Differentiate models for TMDPDFs; 

• Comparison to results from global fits; 

• Predictions for certain TMDPDFs of which there is very little data.

≲ 20 % 0.2 fm < bT < 1 fm

Full TMDPDFs from lattice QCD


