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Recap of Parton Branching approach

M dz Ag( ,u,2) T
) = fladat) + [ E [ 2 pme g (£,,07)
s(1?) z
* solve integral equation via iteration:
from p' to rom u to u'
folz,1?) = fla,md)A(u?) wo trancring | [PESGa T |uG trancing
B du? A(p2) [P dz
2y _ 2YA (1,2 / H / &< p(R) 2YA (1,2
f1($,[.L ) f(xay“O) (/JJ )—1_ p,% M,Q A(M,Q) > ( ) (.CC/Z,[LO) (M )

* with P,(B) (2) real emission probability (without virtual terms)
® 7y Introduced to separate real from virtual and non-emission probability
@ reproduces DGLAP up to O(1 — zas)

2 make use of momentum sum rule to treat virtual corrections
@ yse Sudakov form factor for non-resolvable and virtual corrections

AEYNTNT —exp( Z/: d‘””Z/ dz z Py," (o), z))
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Transverse Momentum Dependence

® Parton Branching evolution generates every
single branching:

® kinematics can be calculated at every step

ot kg a

* Give physics interpretation of evolution scale: 2=1TofTy | C Gtc = K
@ angular ordering:
p=qr/(1-2) zpt ks | b
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D distributions from fit to H

RA data
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* model dependence larger than experimental uncertainties
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What will be known about the TMD structure of
hadrons in 5, 10, and 15 years from now"/

* TMD densities from a global fit
* PB TMD approach is implemented in xfitter
@ allows for precision determination — PB determination from inclusive HERA

* Need: DY transverse momentum spectra for fits

* TMD densities applicable to low and high kr and to all \/ S

Bermudez Martinez, A. et al The transverse momentum spectrum of low mass

? PB approaCh for |OW and hlg h maSS DY Drell--Yan production at next-to-leading order in the parton branching method,

Eur. Phys. J. C, 80(7), 598
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How will your own research contribute to the
progress in understanding of TMD's?

* Further development of PB TMDs and PB TMD fits
* fit collinear and TMD distributions not only to HERA data
® include DY pt measurements at high and low masses
® determination of non-perturbative (intrinsic) kr distribution
@ obtain 3, 4 flavor TMDs
® obtain nuclear TMDs (some available in PB approach)
® obtain v, W, Z TMD densities
@ extension to NNLO in VENS

* Relation of TMD pdfs and TMD parton shower
* essential for full hadron level Monte Carlo event generator
* first and only full hadron level TMD MCEG, CASCADES, existing
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MC

~G: TM

Ds and parton shower - CASCA

@ pasic elements are:

s Matrix Elements:
=2 MC@NLO or POWHEG

« PDFs

s Parton Shower

2>TMDs

z
-

= following TMDs for initial state !

* Proton remnant and hadronization
handled by standard hadronization
program
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Z+b-jets: A ¢ (Zb) - comparison to measurement

CMS, 8 TeV, DeltaPhi_Zb, at least one b jet
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® Good description in large A ¢

region where TMD effects are
relevant

® decorrelation comes
essentially from kr from
INnitial evolution

® details of shower are less
important

@ distribution essentially
determined by TMD
distribution

® uncertainties only from TMD

= /+Db correlation

tests TMD



Z+2b-jets: A ¢ (bb) - comparison to measurement

CMS, 8 TeV, DeltaPhi bb, at least two b jets C
: » Good description
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What will be necessary to extend TMD formalisms
to new scattering processes”

* PB TMDs are easily applicable
* to NLO matrix elements within collinear factorization
@ apply also parton shower and multi-jet merging

* further developments
@ application to off-shell processes (initial and final legs off shell)
® needed for proper treatment of kinematics
* NLO calculation for off-shell processes
* TMD parton shower at higher orders fully consistent with TMD parton densities
@ full NLO and NNLO parton showers
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Conclusion - outlook

* PB TMD has high potential for applications
* at highest energies (LHC etc)
* at low energies (see DY at low energies)

* PB TMDs are best suitable for full Monte Carlo event generators
* including initial and final state parton shower (which follow TMDs)

® precision determination of TMDs from precision measurements
@ consistent with collinear PDFs

® determination of nuclear TMDs

* PB TMDs obtained within xfitter
* ecasily extendable

* TMDIib is the tool — this is the repository for TMDs
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Appendix
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What critical physics questions must be solved to
make progress?

@ TMD physics implies proper treatment of kinematics
@ need to include z+ and x— components (virtuality in addition to kr)

® need approach with off-shell kinematics — off-shell matrix elements
* for initial legs
* for final legs

@ On a different scope: TMD and small x issues
® inclusion of small z dynamics
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What experimental measurements can provide
INncisive information”?

® Low mass DY qr measurements at different energies
® t0o measure non-pert k7 distribution of quarks as function of x

Baranov, S. P., Jung, H., Lipatov, A. V., and Malyshev, M. A. (2017).

<9 bbar prOd ucnon Testing the parton evolution with the use of two-body final states,

Eur. Phys. J., C77(1), 2

@ t0 measure kr distribution of gluons as function of x

® gr measurement in VBS
@ to measure perturbative kr distribution of W,Z at large kr

H. Jung, TMD jamboree in the Snowmass 2021 EF06 Topical Group, October 28, 2020
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Z+ 2 jets: sensitivity to initial state TMD shower
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* TMD has little impact
® initial state PS large small effect (on top of TMD)
* FSR significant only at small A ¢ : g— bb

H. Jung, TMD jamboree in the Snowmass 2021 EF06 Topical Group, October 28, 2020



