Snowmass 2021 Letter of Interest: <u>Hadronic Tomography at the EIC</u>

... and the Energy Frontier

Editors: Salvatore Fazio, Tim Hobbs, Alexei Prokudin, Alessandro Vicini

11 November 2020

possibilities and connections to nuclear and helicity PDFs

Snowmass 2021

EF06/07: pol & nPDFs at EIC

November 2020

Hadronic Tomography at the EIC and the Energy Frontier

Editors in alphabetical order: S. Fazio, T. J. Hobbs¹, A. Prokudin, A. Vicini Authors in alphabetical order: H. Abdolmaleki, M. Ahmady, C. Aidala, A. Al-bataineh, A. Aprahamian, M. Arratia, J. Arrington, A. Asaturyan, A. Bacchetta, F. Benmokhtar, P. Bernard, J. Bernauer, C. Bertulani, V. Bertone, M. Boglione, R. Boughezal, R. Boussarie, G. Bozzi, F. Bradamante, V. Braun, A. Bressan, W. Briscoe, D. Bruhwiler, M. Bukhari, C. Cabrera, C. Muñoz Camacho, A. Camsonne, F. G. Celiberto, T. Chetry, M. Chiosso, E. Cline, M. Constantinou, W. Cosyn, T. Cridge, H. Dahiya, U. D'Alesio, D. Das, M. Defurne, K. Dehmelt, O. Denisov, A. Deshpande, R. De Vita, M. Diefenthaler, S. Dulat, R. Dupré, M. Echevarria, R. Ent, C. Fanelli, R. Fatemi, M. Finger, M. Finger Jr., C. Flore, E. Fouad, T. Frederico, Y. Furletova, L. Gamberg, H. Gao, C. A. Gayoso, G. Gil da Silveira, O. Gonzalez, M. Guzzi, C. Gwenlan, D. Higinbotham, M. Hoballah, T. Horn, C. Hyde, J. Jia, K. Joo, N. Kalantarians, Z. Kang, G. Karyan, D. Keller, R. A. Khalek, M. Klasen, S. R. Klein, A. Kotzinian, Y. Kovchegov, N. Kumar, A. Kusina, A. Kveton, K. Lalwani, X. Li, H.-W. Lin, M. Liu, X. Liu, S. Liuti, C. Lorcé, H. Mäntysaari, D. Marchand, H. Marukyan, N. Mathur, B. McKinnon, A. Metz, C. Mezrag, G. A. Miller, B. Mistlberger, H. Mkrtchyan, V. Mochalov, S. Moch, V. Moiseev, C. Monahan, C. Mondal, L. Motyka, H. Moutarde, A. Mukherjee, C. Munoz, F. Murgia, P. Nadel-Turonski, P. M. Nadolsky, S. Niccolaï, G. Niculescu, E. R. Nocera, V. A. Okorokov, F. Olness, D. Panzieri, B. Pasquini, F. Petriello, C. Pisano, D. Pitonyak, S. Poslavsky, J. Qiu, M. Radici, M. Rinaldi, F. Ringer, C. Roberts, J. Rojo, P. Rossi, M. Ruspa, G. Salmè, R. Sandapen, I. Schienbein, A. Schaefer, A. Schmidt, G. Schnell, P. Schweitzer, I. Scimemi, S. Scopetta, R. Seidl, P. Shanahan, A. Signori, D. Sokhan, G. Souadi, S. Srinivasan, I. Stewart, I. Strakovsky, B. Surrow, P. Sznajder, L. Szymanowski, A. Tadepalli, J. D. Tapia Takaki, R. Thorne, A. Vladimirov, W. Vogelsang, A. Vossen, E. Voutier, J. Wagner, S. Wallon, H. Xing, Z. Ye, R. Young, J. Zanotti, X. Zhao, J. Zhou

\rightarrow broad document representing multiple sub-communities

completed LoI available here

- focus: EIC determinations of partonic distributions (PDFs, GPDs, TMDs)
- tomography encompasses a wide range of EIC ↔ HEP topics

- numerous 3D structure connections to LHC program/objectives
 - **PDFs** and **GPDs**/TMDS: including helicity-odd M.E.s $\sim \langle \gamma^+ \gamma_5 \rangle$
 - <u>high-energy QCD</u> (DIS measurements; heavy quarks/masses, jets, α_s)
 - <u>gluonic structure/Higgs</u> (gluon PDF/GPD; improvements to $gg \rightarrow h$ production)
 - <u>QED effects</u> (photon PDF; improved EW corrections)
 - <u>nuclear structure</u> (nuclear PDFs; connections to heavy-ion UPCs)

progress will depend on various <u>methods</u>

- → phenomenological studies; global analyses [of **PDFs**, **GPDs** ...]
- \rightarrow continuum QCD approaches
- \rightarrow lattice QCD input
- → AI/machine-learning and MCEGs

<u>select</u> topics

measuring hadron's multi-dimensional structure at the EIC

extract unintegrated matrix elements from data:

[schematic]

 $W(x, \vec{b}_T, \vec{k}_T) \sim \langle \gamma^+, \gamma^+ \gamma_5 \rangle$ e.g., Wigner distribution

 \rightarrow related to other distributions via projections,

$$f(x, \vec{k}_T) = \int d^2 \vec{b}_T W(x, \vec{b}_T, \vec{k}_T)$$
 TMD
$$f(x) = \int d^2 \vec{k}_T f(x, \vec{k}_T)$$
 PDF

this generalizes to helicity-odd distributions; GPDs; also, light nuclei!

precision goals at HL-LHC depend partly on hadron structure information

 \rightarrow PDFs, GPDs \rightarrow SM predictions in hadronic collisions

 \rightarrow tomography will be a collaborative theme between EIC/LHC

(i) importance of nuclear data in free nucleon QCD analyses

information involving light nuclei

→ the *d*-quark is predominantly determined from deuterium data with modeldependent nuclear correction(s): $f^{q/d} = f^{q/N} \otimes f^{N/d}$

$$F_2^{e^-n} \sim x(4d + u) \big/ 9$$

nuclear uncertainties and corrections can propagate to free-nucleon PDF determinations...

...and theory predictions at the LHC

- heavy nuclear targets
 - → additional flavor separation often provided by nuclear DIS, including neutrino scattering

CT18 NNLO, s(x, 100 GeV)

EIC potential impact on nPDFs

- inclusive charged-lepton nuclear-DIS data have significant impact (Au, below)
- additional avenues: heavy-quark production; nuclear tomography data

(ii) EIC possibilities with spin-polarized PDFs

- EIC will record data in multiple channels to constrain spin-PDFs (below)
- independent measurements of helicity-odd GPDs and spin-dependent TMDs can provide additional constraint(s)
- interactions with lattice QCD in EIC era

- EIC tomography LOI wraps multiple topics
 - \rightarrow dedicated studies or contributions may be natural
 - → must coordinate these efforts/inputs
 - \rightarrow lessons from EIC YR studies should be included

[also opportunities for extension studies]

- more effort required to develop phenomenlogical implications
- inter-relations among spin, nuclear PDFs an intriguing EIC capability

thanks