Status of HPRF beam test

Study beam loading effect in HPRF cavity

K. Yonehara

Fermilab

Apparatus

Beam on screen

- Signal is saturated
- Need to add neutralizer on camera
- Need to investigate acceptable beam intensity of phosphor screen

Horizontal beam profile from phosphor screen frame by frame

Log

- 7/12/11 Run HPRF cavity with 500 psi N2
- 7/14/11 Run HPRF cavity with 800 psi H2
- 7/15/11 Run HPRF cavity with 950 psi H2
- 7/19/11 Run HPRF cavity with 500 psi H2
 - We could not detect RF pickup signal
 - Beam intensity in front of collimator: 1.2 10¹² protons/pulse
 - Pulse length: 8000 ns
 - # of beam bunches: 8000/5 = 1600
 - Readout transmission efficiency from toroid: 16 %
 - # of protons in cavity: 10⁸ protons/bunch
 - Note! Beam size is very small (2mm in diameter)

Snapshot

500 psi N₂ run

950 psi H₂ run

- No RF breakdown, no short
- Clear beam loading due to ionized electrons is observed
- Beam loading in N₂ is more severe than in H₂

RF & beam signals

Envelop of RF pickup signal after full loading

Beam loading effect on RF pickup signal

Ratio =

Equilibrium RF voltage/Maximum RF pickup voltage w/o beam

Maximum RF pickup voltage w/o beam

- 1. Higher pressure gets better recovery rate
- 2. Some correlation between RF field gradient and recovery process
 - Plasma temperature dependence?

RF pickup voltage vs beam intensity

Ratio =

Equilibrium RF voltage/Maximum RF pickup voltage w/o beam

- 1. Beam intensity was moved ± 10 %
- 2. Ratio is flat with this fraction

Decay time

Ratio =

RF decay time

- 1. Decay time (1/e) is ~ 500 ns
- 2. Decay time tends to be longer in denser hydrogen gas

RF frequency modulation

Conclusion

- First beam test just begun
- No breakdown in cavity (no explosion)
- Denser gas has better recombination rate
- Plan to take beam intensity dependence
- Plan to take electronegative gas effect

