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‣ Jet substructure provides insight into several different scales of QCD 

‣ Can be used to understand everything from fixed order effects to parton 
showers to hadronization 

‣ Jet modeling is one of the dominant sources of uncertainties for many analyses 

‣ Deeper understanding of jet formation can be used to develop better models 
of jets, and to provide better tuning of Monte Carlo predictions

why jet substructure measurements?
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‣ Calculations of substructure observables are complicated by 
the presence of non-global logarithms 

‣ These tend to be soft and wide-angle radiation 

‣ Grooming algorithms remove soft and wide-angle radiation 
from jets 

‣ Soft drop is a grooming algorithm which removes these non-
global logarithms → able to perform precision calculations to 
beyond leading logarithmic accuracy 

‣ Enables precision measurements of Standard Model 
parameters like the top mass or the strong coupling constant ⍺s 

‣ Provides measurements sensitive to different parton shower 
models
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why jet substructure measurements?



j
‣ Run jet finding using 

the anti-kt algorithm

the soft drop algorithm

4



j

 

‣ Recluster its constituents with 
the Cambridge/Aachen 
algorithm to get an angular-
ordered shower history

the soft drop algorithm
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Same jet constituents, 
different clustering 

history

https://arxiv.org/abs/1711.08341
https://arxiv.org/abs/1711.08341


‣ Check if   

‣ If not, drop the softer branch (j2), and 
repeat with the harder branch (j1)

min(pT ,j1, pT ,j2)

(pT ,j1 + pT ,j2)
> zcut(

∆Rj1,j2

R
)β

 

the soft drop algorithm
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https://arxiv.org/abs/1307.0007
https://arxiv.org/abs/1307.0007


j

j1

j2

the soft drop algorithm
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min(pT ,j1, pT ,j2)

(pT ,j1 + pT ,j2)
> zcut(

∆Rj1,j2

R
)β‣ Check if   

‣ If not, drop the softer branch (j2), and 
repeat with the harder branch (j1)



‣ Two free parameters: zcut  and β 

‣ zcut sets the scale of energy removal

‣ Larger values of zcut  mean the more of 
the jet is groomed away 

‣ β determines the sensitivity to wide-
angle radiation 

‣ Smaller values of β mean that more 
aggressive grooming is applied

CERN-EP-2017-231

min(pT ,j1, pT ,j2)

(pT ,j1 + pT ,j2)
> zcut(

∆Rj1,j2

R
)β

the soft drop algorithm
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https://arxiv.org/abs/1711.08341
https://arxiv.org/abs/1711.08341


reconstructing jets
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Resummation 
Region

Fixed-Order 
Region

Non-Perturbative 
Region

e2

the jet mass
‣ The jet mass is one of the most commonly 

used jet substructure observables 

‣ Quarks and gluons are very light, but jets can 
be very massive because of fragmentation 

‣ Measuring 𝝆 = log[(mSoft Drop / pTUngroomed)2] 

‣ Using m / pT results in less dependence on 
underlying pT spectrum
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‣ High-mass region dominated by single hard splitting 

‣ Use log-scale binning to understand the resummation region 

‣ The jet mass calculation is factorizable → different effects dominant in specific places



‣ The calorimeter-based jet mass is 
affected by non-trivial detector 
corrections

‣ Unfolding creates a mapping between 
a detector-level measurement and a 
truth-level distribution 

‣ Corrects for several detector 
effects, reconstruction efficiencies, 
and fake rates 

‣ Simultaneously unfold 𝝆 and pT 
using Bayesian unfolding

the jet mass
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1711.08341

https://arxiv.org/pdf/1711.08341.pdf
https://arxiv.org/pdf/1711.08341.pdf


Higher mass

‣ The calorimeter-based jet mass is 
affected by non-trivial detector 
corrections

‣ Unfolding creates a mapping between 
a detector-level measurement and a 
truth-level distribution 

‣ Corrects for several detector 
effects, reconstruction efficiencies, 
and fake rates 

‣ Simultaneously unfold 𝝆 and pT 
using Bayesian unfolding

the jet mass
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1711.08341

https://arxiv.org/pdf/1711.08341.pdf
https://arxiv.org/pdf/1711.08341.pdf
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1912.09837

the unfolded jet mass

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


the unfolded jet mass
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Resummation 
Region

Fixed-Order 
Region

Non-Perturbative 
Region

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


15

Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

the unfolded jet mass

Resummation 
Region

Fixed-Order 
Region

Non-Perturbative 
Region

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf
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Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

Very good agreement 
with both analytical 

predictions in 
resummation region 

the unfolded jet mass

Resummation 
Region

Fixed-Order 
Region

Non-Perturbative 
Region

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


Resummation 
Region

Fixed-Order 
Region

Non-Perturbative 
Region

the unfolded jet mass
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Analytical predictions 
don’t agree with data, 

but are not designed to 
work here 

Very good agreement 
with both analytical 

predictions in 
resummation region 

NLO+NLL agrees 
better than LO+NNLL 
in fixed order region

1912.09837

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


cluster-based uncertainties
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‣ Percentage of events in the 0 bin describes the probability of not having 
a cluster → Data-MC difference gives cluster efficiency uncertainty

cluster-based uncertainties
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cluster-based uncertainties
‣ Data/MC difference of the mean of the fitted distribution 

describes the cluster energy scale uncertainty

‣ Percentage of events in the 0 bin describes the probability of not having 
a cluster → Data-MC difference gives cluster efficiency uncertainty
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‣ Data/MC 
difference of the 
width of the fitted 
distribution 
describes the 
cluster energy 
resolution 
uncertainty

‣ Percentage of events in the 0 bin describes the probability of not having 
a cluster → Data-MC difference gives cluster efficiency uncertainty

‣ Data/MC difference of the mean of the fitted distribution 
describes the cluster energy scale uncertainty

cluster-based uncertainties
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‣ Data/MC 
difference of the 
width of the fitted 
distribution 
describes the 
cluster energy 
resolution 
uncertainty

‣ Percentage of events in the 0 bin describes the probability of not having 
a cluster → Data-MC difference gives cluster efficiency uncertainty

‣ Cluster angular 
resolution determined 
in Z →μμ events by ΔR 
between track and 
cluster

‣ Data/MC difference of the mean of the fitted distribution 
describes the cluster energy scale uncertainty

cluster-based uncertainties

22



‣ Data/MC 
difference of the 
width of the fitted 
distribution 
describes the 
cluster energy 
resolution 
uncertainty

‣ Percentage of events in the 0 bin describes the probability of not having 
a cluster → Data-MC difference gives cluster efficiency uncertainty

‣ Cluster angular 
resolution determined 
in Z →μμ events by ΔR 
between track and 
cluster

‣ Data/MC difference of the mean of the fitted distribution 
describes the cluster energy scale uncertainty

cluster-based uncertainties
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‣ For substructure measurements with 
calorimeter inputs, we rely on using tracks to 
produce an unbiased estimate of our 
uncertainties


‣ Non-trivial to translate this to particle flow 
algorithms, since the particle flow subtraction 
uses tracking information



24

the unfolded jet mass
1912.09837

‣ Can also measure the jet mass using only charged 
particles 

‣ The overall behavior should be very similar on 
average to the all-particle case, because of 
isospin symmetry 

‣ Tracks have better angular resolution → smaller 
uncertainties in non-perturbative region 

‣ Smaller migrations in migration matrices, 
particularly in low-mass regions where angular 
resolution is important

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


‣ Can also measure the jet mass using only charged 
particles 

‣ The overall behavior should be very similar on 
average to the all-particle case, because of 
isospin symmetry 

‣ Tracks have better angular resolution → smaller 
uncertainties in non-perturbative region 

‣ Smaller migrations in migration matrices, 
particularly in low-mass regions where angular 
resolution is important
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the unfolded jet mass
1912.09837

‣ Some track and cluster observables 
look similar on average 

‣ Particularly true where non-
perturbative effects are small 

‣ No calculations exist for track-
based observables (yet), but 
would be powerful experimentally 

‣ Track-based observables typically 
have much smaller uncertainties

https://arxiv.org/pdf/1912.09837.pdf
https://arxiv.org/pdf/1912.09837.pdf


jet substructure
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the lund plane

The Lund Plane is 
the phase space of 
these emissions: it 
naturally factorises 
perturbative and 
non-perturbative 

effects, UE/MPI, etc.
27

‣ A jet may be approximated as soft emissions around a hard 
core which represents the originating quark or gluon

‣ Emissions may be characterized by 

‣ z = relative momentum of emission 
relative to the jet core 

‣ ∆R = angle of emission relative to 
the jet core



the lund plane

28

‣ A jet may be approximated as soft emissions around a hard 
core which represents the originating quark or gluon

‣ Emissions may be characterized by 

‣ z = relative momentum of emission 
relative to the jet core 

‣ ∆R = angle of emission relative to 
the jet core



the lund plane
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‣ A jet may be approximated as soft emissions around a hard 
core which represents the originating quark or gluon

‣ Emissions may be characterized by 

‣ z = relative momentum of emission 
relative to the jet core 

‣ ∆R = angle of emission relative to 
the jet core

m ~ z*ΔR2 
The jet mass is just one 

diagonal line in this space

]2 )
un

gr
oo

m
ed

T
 / 

p
so

ft 
dr

op
[(m

10
 / 

d 
lo

g
σ

) d
 

re
su

m
σ

(1
 / 

0.2

0.4

0.6
ATLAS

-1= 13 TeV, 32.9 fbs
 > 600 GeVlead

T
 R=0.8, ptanti-k

 = 0.1
cut

 = 2, zβSoft drop, 

]2)ungroomed
T

 / psoft drop[(m
10

log
4− 3− 2− 1−

Ra
tio

 to
 D

at
a

0.5

1

1.5

Data
LO+NNLL, large NP effects
LO+NNLL
NLO+NLL
NLO+NLL+NP



core

emission 1

emission 2

emission 3

emission 4
core

core
core

2. C/A Reclustering:
Combine closest pairs of charged particles or tracks!

3. C/A Declustering:
Unwind, widest angles first. Each step is an 
emission, or, a point in the Lund Jet Plane!

Iterative declustering 
approach to approximate the 
plane, proposed by Dreyer/
Soyez/Salam 1807.04758

ATLAS-CONF-2019-035

4. Plot Emissions:
Characterize emissions 
based on their angle (ΔR), 
and the hardness of the 
splitting and z = pTemission / pT

1. Jet Finding:
Cluster jets using your favorite jet algorithm

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
R)Δln(R/

0

1

2

3

4

5

6ln
(1

/z
)

Particle-level Emission

Detector-level Emission

 Simulation PreliminaryATLAS
Pythia 8 Lund Plane Event Display

the lund jet plane

https://arxiv.org/abs/1807.04758
https://arxiv.org/abs/1807.04758
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2019-035/
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2004.03540

‣ Unfolded the primary Lund 
plane in dijet events 

‣ Use tracks associated to the 
jets in order to have precise 
measurements for small 
splittings 

‣ Unfolded to charged particle 
level

the lund jet plane

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Unfolded the primary Lund 
plane in dijet events 

‣ Use tracks associated to the 
jets in order to have precise 
measurements for small 
splittings 

‣ Unfolded to charged particle 
level

2004.03540
the lund jet plane

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Non-trivial differences between 
different generators and unfolded data 

‣ Region dominated by hard and wide-
angle splitting is affected by parton 
shower 

‣ Hadronization effects in region with 
non-perturbative effects

2004.03540
the lund jet plane

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Non-trivial differences between 
different generators and unfolded data 

‣ Region dominated by hard and wide-
angle splitting is affected by parton 
shower 

‣ Hadronization effects in region with 
non-perturbative effects

2004.03540
the lund jet plane

https://arxiv.org/abs/2004.03540
https://arxiv.org/abs/2004.03540
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‣ Possible to produce predictions for 
parts of the LJP 

‣ All-order calculation is accurate 
down to kt of ~5 GeV 

‣ Example of substructure prediction 
without grooming algorithm! 

‣ Work ongoing to extend this to 
higher logarithmic accuracy

2007.06578the lund jet plane

https://arxiv.org/pdf/2007.06578.pdf
https://arxiv.org/pdf/2007.06578.pdf


jet substructure
jet substructure
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‣ Jet substructure observables are sensitive to the 
soft radiation in the jet 

‣ Need pileup mitigation to reduce these effects 

‣ Good object and detector design helps to 
minimize these effects 

‣ Techniques like Constituent Subtraction or 
SoftKiller also lessen the effects of pileup  

‣ Future colliders will require that we have a better 
understanding of how to mitigate pileup effects 

‣ FCC-hh could have up to 1000 interactions per 
bunch crossing! 

‣ Muon colliders have beam-induced 
backgrounds, which will result in similar issues
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JETM-2018-06pileup mitigation 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-06/
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/JETM-2018-06/


‣ Need excellent boosted object reconstruction to be able to tag W/Z/top jets 
‣ Boosted jets at FCC/SPPC energies will look significantly different than at the LHC 
‣ Containment will happen for much smaller jet radii than at the LHC 
‣ The decay products of W/Z decays could conceivably be collimated within a 

single calorimeter cell! 
‣ Need more studies to understand the full implications of this for future colliders
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Top jets,


R=0.1

Top jets, 


R=0.2

Top jets,


R=0.5

future colliders



other substructure measurements  
‣ Covering the measurements most relevant for 

pQCD, but many interesting measurements of jet 
substructure from ATLAS 

‣ Including links here for anyone interested in 
learning more, and more information in the backup
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1903.02942

1812.09283

1906.09254

1907.07093

Measurement of Z(bb) + ɣ Measurement of jet fragmentation 

Measurement of jet substructure observables  
for top quark, W jets, and light jets

Measurement of g → bbMeasurement of the jet pull

1805.02935

https://arxiv.org/pdf/1903.02942.pdf
https://arxiv.org/pdf/1903.02942.pdf
https://arxiv.org/pdf/1812.09283.pdf
https://arxiv.org/pdf/1812.09283.pdf
https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1907.07093.pdf
https://arxiv.org/pdf/1907.07093.pdf
https://arxiv.org/pdf/1805.02935.pdf
https://arxiv.org/pdf/1805.02935.pdf


other substructure measurements  

‣ Lots of recent developments in heavy ions, which are 
beyond the scope of today’s talk 

‣ Studies of jet substructure help provide insight into 
jet quenching 

‣ Measurements are relatively recent, and lots of 
rapid development in this area
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1903.02942

https://arxiv.org/pdf/1903.02942.pdf
https://arxiv.org/pdf/1903.02942.pdf


concluding thoughts 
‣ Detector and experimental developments are crucial for improving precision of substructure 

measurements

‣ Advances in detector design (like timing detectors), and object reconstruction open new doors for more 
advanced substructure reconstruction 

‣ New colliders will make substructure reconstruction more challenging, with higher energies and 
increased pileup 

‣ Need to design detectors with substructure in mind in order to take full advantage of their capabilities! 

‣ Tracking will continue being an important part of substructure measurements

‣ Provides simple and robust way of measuring substructure observables, at the cost of only measuring 
charged particles 

‣ Need more discussions between theorists and experimentalists on possibilities for using these for 
predictions  

‣ See Ian Moult’s talk for ideas of how this can be addressed in the future!
41



concluding thoughts 
‣ Jet substructure is a quickly developing field

‣ Jet mass measurement demonstrates experimental and theoretical 
understanding of jet substructure beyond LL accuracy 

‣ New ideas and predictions are frequent — the first calculations beyond 
leading logarithmic accuracy were completed a few years ago, and the Lund 
jet plane was only proposed a two years ago 

‣ Current measurements of jet substructure lay the foundations for broader 
explorations of QCD, including measurements of ⍺s, better parton showers, 
and more
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thanks!
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Measurement of the jet pull
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‣ The jet pull is sensitive to color connection in QCD


‣ ttbar events can contain both color connected and non-
connected jets


‣ No prediction is able to model both the pull angle and magnitude 



‣ Jet formation is complicated, and is not fully 
describable by perturbation theory


‣ Rely on Monte Carlo models in order to produce 
predictions involving jets


‣ Jet fragmentation measurements study the distribution 
of particles within a jet


‣ Includes observables such as the number of charged 
particles, the radial profile, and more


‣ Energy dependence calculable in perturbation theory


‣ Important input for tuning MC, and some significant 
disagreements between data and MC


‣ Using tracks to calculate fragmentation to improve 
precision

jet fragmentation 
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1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ Jet fragmentation does not depend 
strongly on η, just on the initiating parton


‣ Central jets tend to be gluon initiated 
more often than forward jets

jet fragmentation 
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‣ Measuring forward and central jets separately 
gives us access to differences between quarks 
and gluons

1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ The measured distributions are a linear 
combination of the quark and gluon distributions, 
multiplied by the fraction of quarks and gluons


‣ Can invert this to extract the quark and gluon 
distributions in data


‣ Two methods:


‣ Use the quark and gluon fractions determined 
in an MC generator (e.g. Pythia)


‣ Use topic modeling to extract the distributions, 
which uses a minimization to separate mutually 
irreducible distributions

jet fragmentation 
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=

Gluon  
FractionG

Quark  
FractionQ

+

1906.09254

https://arxiv.org/pdf/1802.00008.pdf
https://arxiv.org/pdf/1802.00008.pdf
https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ Both methods provide similar results for the extracted quark and gluon distributions


‣ First time topic modeling has been used in a measurement!


‣ Provides more model-independent way of extracting this information

jet fragmentation 
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1906.09254

https://arxiv.org/pdf/1906.09254.pdf
https://arxiv.org/pdf/1906.09254.pdf


‣ Gluon fragmentation is challenging to measure, and also 
important for background modeling


‣ Using templates to estimate the background for g→bb 
events

Measurement of g→bb properties
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1812.09283

‣ Certain aspects of the gluon 
fragmentation are not well-
modeled by any of the studied 
MC predictions

https://arxiv.org/pdf/1812.09283.pdf
https://arxiv.org/pdf/1812.09283.pdf
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‣ First measurement of unfolded jet mass 
spectrum of hadronically decaying Z bosons 
at the LHC 

‣ Important for understanding boosted boson 
hadronic decays (color singlets) 

‣ Have measurements of color octet states 
such as g→bb

1907.07093

https://arxiv.org/abs/1907.07093
https://arxiv.org/abs/1907.07093
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‣ Use 𝛄 to trigger on events and for background estimation 

‣ Reconstructing both Z boson decay products within a single 
large-R jet 

‣ Require two R=0.2 b-tagged subjets to be associated to the 
large-R jet  

‣ Simultaneously fit signal and background templates to 
Z(→bb) mass distribution

1907.07093

non-tight 𝛄, tight 𝛄

https://arxiv.org/abs/1907.07093
https://arxiv.org/abs/1907.07093
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• Slightly different event 
selections for each different 
final state 

•

1903.0294Jet substructure observables in top quark, 
W boson, and light jet production 

https://arxiv.org/abs/1903.02942
https://arxiv.org/abs/1903.02942
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‣ Number of subjets follows expectation 

‣ Most results consistent with the different generators

1903.0294

Jet substructure observables in top quark, W boson, and light jet production 

https://arxiv.org/abs/1903.02942
https://arxiv.org/abs/1903.02942


Pileup Mitigation: Constituent Subtraction
‣ Constituent-level pileup mitigation technique which rescales the 

constituent 4-momentum 

‣ Adds ghosts evenly throughout an event with pT density equal 
to the median energy density ρ  

‣ Ghosts matched to constituents, and the ghost pT is subtracted 
off 

‣ Only matched within some maximum ΔR of the constituent 

‣ After subtraction, the median energy density should be 
approximately zero 

‣ Note that for PFlow and TCCs, only the neutrals are used and 
corrected

54 CONF note on pileup mitigation
Constituent Subtraction Paper

http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf
http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf
https://arxiv.org/abs/1403.3108
https://arxiv.org/abs/1403.3108


Pileup Mitigation: Voronoi Subtraction
• Voronoi subtraction is a type of constituent-level pileup mitigation which uses the median energy 

density (ρ) and the Voronoi area to reweight constituents 

• Voronoi area is the area of points in η-ɸ space which are closer to a constituent than any other 

• Leaves some constituents with negative pT — Voronoi suppression discards any constituents 
with negative pT

55Uncorrected Subtraction Suppression

CONF note on pileup subtraction

http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf
http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf


Pileup Mitigation: SoftKiller
‣ Determines an event-by-event pT cut for constituents 

‣ Should apply either Voronoi Subtraction or Constituent Subtraction first 

‣ Makes a grid, finds pT cut where half of grid cells are empty afterwards 

‣ Note that for PFlow and TCCs, only the neutrals are used and corrected
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CONF note on pileup mitigationSoftKiller Paper

http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf
http://cds.cern.ch/record/2281055/files/ATLAS-CONF-2017-065.pdf
https://arxiv.org/abs/1407.0408
https://arxiv.org/abs/1407.0408
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‣ Jets are composed of both charged and neutral 
hadrons


‣ Isospin symmetry means that observables 
should be similar when constructed from all 
particles or only charged particles


‣ Analytical predictions only for all-particles


‣ Need to use the information from the 
calorimeter


‣ Combine nearby groups of calorimeter cells into 
clusters in order to produce object which 
approximately corresponds to a single particle

jet inputs: topoclusters
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‣ Use the ‘4-2-0’ algorithm for reconstruction


‣ Clusters are seeded by cells with energy of 
4σ above the expected noise


‣ Any neighboring cells with E>2σ are added 
recursively until no high-energy neighboring 
cells remain


‣ All neighboring cells are added, regardless 
of their energy


‣ Clusters with multiple local maxima are split

jet inputs: topoclusters
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‣ Use the ‘4-2-0’ algorithm for reconstruction


‣ Clusters are seeded by cells with energy of 
4σ above the expected noise


‣ Any neighboring cells with E>2σ are added 
recursively until no high-energy neighboring 
cells remain


‣ All neighboring cells are added, regardless 
of their energy


‣ Clusters with multiple local maxima are split

jet inputs: topoclusters
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jet inputs: topoclusters
‣ Use the ‘4-2-0’ algorithm for reconstruction


‣ Clusters are seeded by cells with energy of 
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uncertainties
‣  QCD modeling uncertainties 

dominate, especially in the non-
perturbative region


‣ Cluster energy scale shift 
uncertainty large at lower masses 
where there are few clusters per jet


‣ Cluster energy scale smearing 
and cluster energy scale shift 
become more important at higher 
masses where the energy of hard 
prongs dominates
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uncertainties
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‣ Tracking uncertainties are typically smaller than cluster uncertainties


‣ This is more apparent for larger values of beta, where more soft radiation is included in the jet


‣ Fragmentation modeling uncertainty is smaller for track-based observable, which is related to the smaller 
migrations in the response matrix



looking forward: αs
‣ Differential cross section for jet mass is 

proportional to αs x Ci in the resummation 
region  

‣ Measurements of mass with multiple 
samples with different quark/gluon 
fractions could be used to extract αs 

‣ May be able to get somewhere around 
5-10% precision

‣ Not competitive with precise measurements, could be used to better 
understand discrepancies between existing measurements 

‣ Also could provide measurement of running of ⍺s

Les Houches 2017
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https://arxiv.org/abs/1803.07977
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