

Snowmass21 Instrumentation Frontier –
Solid State Detectors and Tracking,
17 Sept 2020

Simulations of Si radiation detectors for HEP: Modeling of bulk and surface radiation damage

Timo Peltola (1

(1 Texas Tech University, Department of Physics and Astronomy, Lubbock 79409, TX

Radiation induced defects in Si: Modeling

Radiation damage in Si: Defect Parameters

- \square Radiation (Φ_{eq} >1e13 cm⁻²) causes damage to Si crystal structure (Φ_{eq} = 1-MeV n_{eq}) \square Φ_{eq} >1e14 cm⁻² lead to significant degradation of CCE due to charge carrier trapping
- **□** Bulk & surface damage affect detector performance:
 - Bulk: Deep acceptor & donor type trap levels
 - Surface: Charge layer accumulated inside oxide
- □ 11 defect levels observed to influence irradiated Si detectors (backups 1-2)
 - → Vast parameter space to model

Defect parameters

Defect type	E _a [eV]	$\sigma_{\rm n}$ [cm ²]	$\sigma_{\rm p}$ [cm ²]	N _t [cm ⁻³]
Acceptor	<i>E_C</i> - x ₁	O(1e-14)	O(1e-14)	η ₁ ·Φ + c ₁
Donor	$E_V + X_2$	O(1e-14)	O(1e-14)	$\eta_2 \cdot \Phi + c_2$

Effective models needed for simulation

[M. Moll, VERTEX 2013]

Simulated defects I: bulk damage

Transient currents & CCE: Measured vs simulated

- **Measured:** Φ =(6.1±0.5)e14 n_{eq}cm⁻²
- TCAD simulated: Φ =6.0e14 n_{eq}cm⁻²
- □ CCE(Φ) @ (1 ~6.5)e14 n_{eq}cm⁻²:

 Measured CCE closely reproduced by simulation
- □ TCAD input parameters from measured
 CV/IV & TCT pre-irradiation (devices:
 backups 5 6)

- **HGCAL:** Highly segmented calorimeter @ 1.5 ≤ η ≤ 3.0 → radiation dominated by neutrons
- Neutron defect model, Φ = 1e14 ~1e15 n_{eq}cm⁻² [1] (proton & neutron models: backups 3 4):

Type of defect	Level [eV]	σ _e [cm ²]	σ_h [cm²]	C [cm ⁻³]
Acceptor	$E_{\rm C}$ - 0.525	1.2e-14	1.2e-14	1.55*Φ
Donor	E_V + 0.48	1.2e-14	1.2e-14	1.395*⊕

[1] R. Eber, PhD Thesis, KIT (2013)

Transient current [-mA]

Effective fluence [n_{eq}/cm²]

Edge-TCT: Neutron irradiated strip detector

Simulated defects II: surface damage

Irradiated MOS: N_f & interface traps (N_{it})

- Al₂O₃ (alumina): Negative oxide charge (N₅)
 Neutron irradiation: Initial increase of MOS
 - V_{fb} , then decrease \rightarrow influence of donor N_{it} ?
- Interface trap test level:

Type of defect	Level [eV]	σ _e [cm ²]	σ_h [cm ²]	Density [cm ⁻²]
uelect	[GV]	[CIII]	[CIII]	
Donor	E_{V} + 0.6	1e-15	1e-15	variable

- Decreased V_{fb}, slope change & dip @ depletion reproduced by simulation → evidence that N_{it,donor} ≈ N_f @ high neutron Φ
- \square SiO₂: Positive N_f

Simulated defects III: bulk & surface damage

Measured/TCAD R_{int}: 3L-model @ 1e15 n_{eq}/cm²

Neutron irradiated pad sensor:

 Φ_{eff} =1.2e15±20% n_{eq} /cm^{2*}

- Measured: Pads isolated @ all V
 - Neutron defect model [1]: Φ =1e15 n_{eq}/cm^2 , N_f = (1.41±0.15)e12 cm⁻² \rightarrow Pads isolated @ V > 450 V (backup 9) \rightarrow need more realistic surface model

Preliminary 3L-model @ \leq 2 µm depth & 1e15 n_{eq} /cm², N_f =1.4e12 cm²: Pads isolated @ all V, stable C_{int} (backup 10)

■ Bulk properties of neutron model unaffected

Type of defect	Level	$\sigma_{\rm e}$	$\sigma_{\rm h}$	C [om-3]
aerect	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acc.	$E_{\rm C}$ - 0.525	1.2e-14	1.2e-14	1.550*Ф
Deep donor	$E_V + 0.48$	1.2e-14	1.2e-14	1.395*Ф
Shallow acc.	E_{C} - 0.40	8e-15	2e-14	1.1e18

☐ 2D-devices: backup 8

☐ 3L-model for protons: backups 11 – 12

3D-HGCAL regions & p-stops: E_{max} @ 1 kV

Outlook: Sensors at extreme fluences

- **□** Si sensors @ extreme fluences ($\Phi \ge 1e16 \text{ n}_{eq}\text{cm}^{-2}$):
 - Low-T operation: Mitigate leakage current
 - Cryo-T operation: Mobility & trapping times increase → faster output signals & higher Q_{coll}
 - Electron collection: ~3 times higher mobility & longer trapping times to holes
 - Oxygenated bulk: Suppressed build-up of negative space charge (charged hadrons)
 - Short drift distance (<100 μm): Minimize trapping probability
 - Large signal & short drift distance:
 - LGAD: Charge-multiplication layer (p-well)
 - o **3D-pixels:** Decoupled signal amplitude & drift distance

■ Extreme-Φ defect model:

- Start by tuning against measured CCE & N_{eff} evolution @ Φ > 1e15 n_{eq} cm⁻² (level depths, trap concentrations,..)
- Add E-field tuning (edge-TCT) & surface properties (R_{int}, C_{int}, charge sharing,...)

Back-up 1: Defect Characterization Overview

- ☐ **Trapping:** Indications that E205a and H152K (midgap levels) are important
- \Box Consistent set of defects observed after p, π , n, γ and e irradiation
- ☐ Understanding of defect properties/macroscopic effects is essential for the implementation of defect simulation

Back-up 2: Defects in silicon: Overlook

- Each defect: Energy level in Si bandgap or variety, depending on conglomeration of defects
- Multitude of E-levels, cross sections & concentrations: huge parameter space to model

□ 11 defect levels proved to influence performance of irradiated Si detectors → Effective model is needed for simulation

Energy levels from Thermally Stimulated Current (TSC) measurement

H defects: [I. Pintilie et al., Appl. Phys. Lett. **92**, 024101 (2008)]

BD: [I. Pintilie et al., NIM A **514**, 18 (2003)] & [I. Pintilie et al., NIM A **556**, (1), 197 (2006)] & [E. Fretwurst et al., NIM A **583**, 58 (2007)]

E30: [I. Pintilie et al., NIM A **611**, 52-68 (2009)]

Back-up 3: Defect simulations - TCAD

- **☐** Motivation for Technology Computer-Aided Design (TCAD) simulations:
 - E-fields not possible to measure directly → Predict E-fields & trapping in irradiated sensors
 - Verify measurements → Find physics behind unexpected results
 - Predictions for novel structures & conditions → Device structure optimization
 - **□** Principle for irradiated Si detector TCAD simulation:
 - Minimized set:
 - 2 midgap levels DD & DA applied to reproduce & predict:
 Bulk generated current + E(depth) + trapping
 - Surface damage: Fixed charge density N_f @ SiO₂/Si interface w/ interface traps N_{it} of varying depth distributions
- \Box Sentaurus TCAD proton & neutron defect models for Φ_{eq} =1e14 ~ 1e15 cm⁻² @ T=253 K [1]

Defect type	Level [eV]	$\sigma_{ m e}$ [cm 2]	σ _h [cm ²]	Concentration [cm ⁻³]
Deep acc.	E _C - 0.525	1e-14	1e-14	1.189*Φ + 6.454e13
Deep donor	$E_V + 0.48$	1e-14	1e-14	5.598*Ф - 3.959e14

Defect type	Level [eV]	σ_e [cm ²]	σ_h [cm ²]	Concentration [cm ⁻³]
Deep acc.	<i>E_C</i> - 0.525	1.2e-14	1.2e-14	1.55 *Φ
Deep donor	E_{V} + 0.48	1.2e-14	1.2e-14	1.395 *Φ

- □ Can trapping be explained in frame of 2-DL model? [2]
- $\beta \approx 5e-7 \text{ s}^{-1}\text{cm}^2 \& \Phi = 1e14 \text{ cm}^{-2} \to \tau = 20 \text{ ns}$
- Trapping X-section σ =1e-14 cm², v_{th} =2e7 cm/s
- \rightarrow N_t = 1/[σ V_{th} τ] = 2.5e14 cm⁻³ or intro rate η (N_t) = 2.5

 $\eta(N_t)$, $\eta(DA)$ & $\eta(DD)$ have equal range \rightarrow

2-DL model has potential to model CCE(Φ)

Back-up 4: DP & LC for neutron & proton defect models

□ 300 µm thick p-on-n pad detector @ T=253 K

- DP is produced by both models (more pronounced in PM due to higher trap concentration for given Φ)

- □ Dashed black lines: experimental LC by $\Delta I = Volume \cdot \alpha \cdot \Phi$, α(253K)≈8.9·10⁻¹⁹ A·cm⁻¹
- ☐ LC has perfect match with experimental values

Backup 5: Simulated sensors - 2D & 3D designs

Backup 6: Measured CV/IV - Simulation input

Back-up 7: Method for simulated edge-TCT

□ Experimental: Estimate E-field from drift velocity v_{drift} using eTCT \rightarrow provides measurement of collection time $t_c \propto v_{drift}$

Principal of edge-TCT simulation:

- ☐ TCAD simulated edge-TCT collected charges Q(z) for non-irradiated 320 μm p-on-n strip detector @ V<V_{fd} & V>V_{fd}, T = 293 K
- □ Dashed vertical lines: Active region of detector (defined from center of rising & descending slopes of Q(z) distribution) → Different E-field extensions into bulk from pn-junction at z=0 are reflected by Q(z)
- □ Differences in Q(z) amplitude: Reproduced by using laterally extended device structure → extension of E-field to detector edges

Backup 8: 8-in sensors - Common/atoll p-stops

☐ TCAD structures: DC-coupled 200P

Backup 9: TCAD R_{int} - 3 extraction methods

M1: R_{int} = slope of V(RP) vs I(RP) for fixed bias V (laborous) → same as FNAL measured R_{int}*

M2: V(on/off) @ RP:
$$R_{int} = \frac{U(1 V)}{I(1 V) - I(0 V)}$$

→ given directly by simulation (fast)

M3: R_{int} ≈ Z_{int} = 1/admittance \rightarrow given directly by simulation (fast)

Method 1: Anomalous increase of R_{int} @ LV (not expected)

*) Measured R_{int} by R. Lipton & M. Alyari

Backup 10: Common vs atoll p-stop - Rint/Cint

Back-up 11: Proton bulk & surface damage: CCE(x)

Back-up 12: Proton 3L-model

 ☐ Heavily irradiated strip detectors demonstrate significant position dependency of CCE [CCE(x)]

3-level model within 2 µm of device surface + proton model in bulk:

 R_{int} & C_{int} in line w/ measured also @ high Φ & N_{ϵ}

Test beam measured:

- Strips isolated
- CCE loss ~30%

 □ Irradiation produces shallow traps close to surface → greater drift distance, higher trapping of carriers Preliminary parametrization for Φ = 3e14 – 1.4e15 n_{eq}/cm^{-2}

Defect type	Level	$\sigma_{ m e}$	σ_{h}	С
	[eV]	[cm ²]	[cm ²]	[cm ⁻³]
Deep acc.	$E_{\rm C}$ - 0.525	1e-14	1e-14	1.189*⊕ + 6.454e13
Deep donor	$E_V + 0.48$	1e-14	1e-14	5.598*Ф - 3.959e14
Shallow acc.	E_{C} - 0.40	8e-15	2e-14	14.417*Φ + 3.168e16