Snowmass21 Instrumentation Frontier – Solid State Detectors and Tracking, 17 Sept 2020 Simulations of Si radiation detectors for HEP: Modeling of bulk and surface radiation damage ### Timo Peltola (1 (1 Texas Tech University, Department of Physics and Astronomy, Lubbock 79409, TX # Radiation induced defects in Si: Modeling ## Radiation damage in Si: Defect Parameters - \square Radiation (Φ_{eq} >1e13 cm⁻²) causes damage to Si crystal structure (Φ_{eq} = 1-MeV n_{eq}) \square Φ_{eq} >1e14 cm⁻² lead to significant degradation of CCE due to charge carrier trapping - **□** Bulk & surface damage affect detector performance: - Bulk: Deep acceptor & donor type trap levels - Surface: Charge layer accumulated inside oxide - □ 11 defect levels observed to influence irradiated Si detectors (backups 1-2) - → Vast parameter space to model ### **Defect parameters** | Defect type | E _a [eV] | $\sigma_{\rm n}$ [cm ²] | $\sigma_{\rm p}$ [cm ²] | N _t [cm ⁻³] | |-------------|---------------------------------------|-------------------------------------|-------------------------------------|------------------------------------| | Acceptor | <i>E_C</i> - x ₁ | O(1e-14) | O(1e-14) | η ₁ ·Φ + c ₁ | | Donor | $E_V + X_2$ | O(1e-14) | O(1e-14) | $\eta_2 \cdot \Phi + c_2$ | **Effective** models needed for simulation [M. Moll, VERTEX 2013] # Simulated defects I: bulk damage ### Transient currents & CCE: Measured vs simulated - **Measured:** Φ =(6.1±0.5)e14 n_{eq}cm⁻² - TCAD simulated: Φ =6.0e14 n_{eq}cm⁻² - □ CCE(Φ) @ (1 ~6.5)e14 n_{eq}cm⁻²: Measured CCE closely reproduced by simulation - □ TCAD input parameters from measured CV/IV & TCT pre-irradiation (devices: backups 5 6) - **HGCAL:** Highly segmented calorimeter @ 1.5 ≤ η ≤ 3.0 → radiation dominated by neutrons - Neutron defect model, Φ = 1e14 ~1e15 n_{eq}cm⁻² [1] (proton & neutron models: backups 3 4): | Type of defect | Level
[eV] | σ _e
[cm ²] | σ_h
[cm²] | C [cm ⁻³] | |----------------|----------------------|---|-------------------------------|------------------------------| | Acceptor | $E_{\rm C}$ - 0.525 | 1.2e-14 | 1.2e-14 | 1.55*Φ | | Donor | E_V + 0.48 | 1.2e-14 | 1.2e-14 | 1.395*⊕ | [1] R. Eber, PhD Thesis, KIT (2013) Transient current [-mA] Effective fluence [n_{eq}/cm²] ## Edge-TCT: Neutron irradiated strip detector # Simulated defects II: surface damage # Irradiated MOS: N_f & interface traps (N_{it}) - Al₂O₃ (alumina): Negative oxide charge (N₅) Neutron irradiation: Initial increase of MOS - V_{fb} , then decrease \rightarrow influence of donor N_{it} ? - Interface trap test level: | Type of defect | Level
[eV] | σ _e
[cm ²] | σ_h [cm ²] | Density
[cm ⁻²] | |----------------|----------------------|--------------------------------------|---|--------------------------------| | uelect | [GV] | [CIII] | [CIII] | | | Donor | E_{V} + 0.6 | 1e-15 | 1e-15 | variable | - Decreased V_{fb}, slope change & dip @ depletion reproduced by simulation → evidence that N_{it,donor} ≈ N_f @ high neutron Φ - \square SiO₂: Positive N_f # Simulated defects III: bulk & surface damage # Measured/TCAD R_{int}: 3L-model @ 1e15 n_{eq}/cm² **Neutron irradiated pad sensor:** Φ_{eff} =1.2e15±20% n_{eq} /cm^{2*} - Measured: Pads isolated @ all V - Neutron defect model [1]: Φ =1e15 n_{eq}/cm^2 , N_f = (1.41±0.15)e12 cm⁻² \rightarrow Pads isolated @ V > 450 V (backup 9) \rightarrow need more realistic surface model Preliminary 3L-model @ \leq 2 µm depth & 1e15 n_{eq} /cm², N_f =1.4e12 cm²: Pads isolated @ all V, stable C_{int} (backup 10) ■ Bulk properties of neutron model unaffected | Type of defect | Level | $\sigma_{\rm e}$ | $\sigma_{\rm h}$ | C [om-3] | |----------------|---------------------|--------------------|--------------------|---------------------| | aerect | [eV] | [cm ²] | [cm ²] | [cm ⁻³] | | Deep acc. | $E_{\rm C}$ - 0.525 | 1.2e-14 | 1.2e-14 | 1.550*Ф | | Deep donor | $E_V + 0.48$ | 1.2e-14 | 1.2e-14 | 1.395*Ф | | Shallow acc. | E_{C} - 0.40 | 8e-15 | 2e-14 | 1.1e18 | ☐ 2D-devices: backup 8 ☐ 3L-model for protons: backups 11 – 12 # 3D-HGCAL regions & p-stops: E_{max} @ 1 kV ### Outlook: Sensors at extreme fluences - **□** Si sensors @ extreme fluences ($\Phi \ge 1e16 \text{ n}_{eq}\text{cm}^{-2}$): - Low-T operation: Mitigate leakage current - Cryo-T operation: Mobility & trapping times increase → faster output signals & higher Q_{coll} - Electron collection: ~3 times higher mobility & longer trapping times to holes - Oxygenated bulk: Suppressed build-up of negative space charge (charged hadrons) - Short drift distance (<100 μm): Minimize trapping probability - Large signal & short drift distance: - LGAD: Charge-multiplication layer (p-well) - o **3D-pixels:** Decoupled signal amplitude & drift distance ### ■ Extreme-Φ defect model: - Start by tuning against measured CCE & N_{eff} evolution @ Φ > 1e15 n_{eq} cm⁻² (level depths, trap concentrations,..) - Add E-field tuning (edge-TCT) & surface properties (R_{int}, C_{int}, charge sharing,...) ## **Back-up 1:** Defect Characterization Overview - ☐ **Trapping:** Indications that E205a and H152K (midgap levels) are important - \Box Consistent set of defects observed after p, π , n, γ and e irradiation - ☐ Understanding of defect properties/macroscopic effects is essential for the implementation of defect simulation ## Back-up 2: Defects in silicon: Overlook - Each defect: Energy level in Si bandgap or variety, depending on conglomeration of defects - Multitude of E-levels, cross sections & concentrations: huge parameter space to model □ 11 defect levels proved to influence performance of irradiated Si detectors → Effective model is needed for simulation **Energy levels from Thermally Stimulated Current (TSC) measurement** H defects: [I. Pintilie et al., Appl. Phys. Lett. **92**, 024101 (2008)] BD: [I. Pintilie et al., NIM A **514**, 18 (2003)] & [I. Pintilie et al., NIM A **556**, (1), 197 (2006)] & [E. Fretwurst et al., NIM A **583**, 58 (2007)] E30: [I. Pintilie et al., NIM A **611**, 52-68 (2009)] ### Back-up 3: Defect simulations - TCAD - **☐** Motivation for Technology Computer-Aided Design (TCAD) simulations: - E-fields not possible to measure directly → Predict E-fields & trapping in irradiated sensors - Verify measurements → Find physics behind unexpected results - Predictions for novel structures & conditions → Device structure optimization - **□** Principle for irradiated Si detector TCAD simulation: - Minimized set: - 2 midgap levels DD & DA applied to reproduce & predict: Bulk generated current + E(depth) + trapping - Surface damage: Fixed charge density N_f @ SiO₂/Si interface w/ interface traps N_{it} of varying depth distributions - \Box Sentaurus TCAD proton & neutron defect models for Φ_{eq} =1e14 ~ 1e15 cm⁻² @ T=253 K [1] | Defect
type | Level
[eV] | $\sigma_{ m e}$ [cm 2] | σ _h [cm ²] | Concentration
[cm ⁻³] | |----------------|------------------------|----------------------------|--|--------------------------------------| | Deep acc. | E _C - 0.525 | 1e-14 | 1e-14 | 1.189*Φ + 6.454e13 | | Deep donor | $E_V + 0.48$ | 1e-14 | 1e-14 | 5.598*Ф - 3.959e14 | | Defect type | Level
[eV] | σ_e [cm ²] | σ_h [cm ²] | Concentration [cm ⁻³] | |-------------|------------------------------|---|---|-----------------------------------| | Deep acc. | <i>E_C</i> - 0.525 | 1.2e-14 | 1.2e-14 | 1.55 *Φ | | Deep donor | E_{V} + 0.48 | 1.2e-14 | 1.2e-14 | 1.395 *Φ | - □ Can trapping be explained in frame of 2-DL model? [2] - $\beta \approx 5e-7 \text{ s}^{-1}\text{cm}^2 \& \Phi = 1e14 \text{ cm}^{-2} \to \tau = 20 \text{ ns}$ - Trapping X-section σ =1e-14 cm², v_{th} =2e7 cm/s - \rightarrow N_t = 1/[σ V_{th} τ] = 2.5e14 cm⁻³ or intro rate η (N_t) = 2.5 $\eta(N_t)$, $\eta(DA)$ & $\eta(DD)$ have equal range \rightarrow 2-DL model has potential to model CCE(Φ) ### Back-up 4: DP & LC for neutron & proton defect models □ 300 µm thick p-on-n pad detector @ T=253 K - DP is produced by both models (more pronounced in PM due to higher trap concentration for given Φ) - □ Dashed black lines: experimental LC by $\Delta I = Volume \cdot \alpha \cdot \Phi$, α(253K)≈8.9·10⁻¹⁹ A·cm⁻¹ - ☐ LC has perfect match with experimental values # Backup 5: Simulated sensors - 2D & 3D designs # Backup 6: Measured CV/IV - Simulation input # Back-up 7: Method for simulated edge-TCT **□ Experimental:** Estimate E-field from drift velocity v_{drift} using eTCT \rightarrow provides measurement of collection time $t_c \propto v_{drift}$ ### **Principal of edge-TCT simulation:** - ☐ TCAD simulated edge-TCT collected charges Q(z) for non-irradiated 320 μm p-on-n strip detector @ V<V_{fd} & V>V_{fd}, T = 293 K - □ Dashed vertical lines: Active region of detector (defined from center of rising & descending slopes of Q(z) distribution) → Different E-field extensions into bulk from pn-junction at z=0 are reflected by Q(z) - □ Differences in Q(z) amplitude: Reproduced by using laterally extended device structure → extension of E-field to detector edges ## Backup 8: 8-in sensors - Common/atoll p-stops ☐ TCAD structures: DC-coupled 200P # **Backup 9:** TCAD R_{int} - 3 extraction methods **M1:** R_{int} = slope of V(RP) vs I(RP) for fixed bias V (laborous) → same as FNAL measured R_{int}* **M2:** V(on/off) @ RP: $$R_{int} = \frac{U(1 V)}{I(1 V) - I(0 V)}$$ → given directly by simulation (fast) **M3:** R_{int} ≈ Z_{int} = 1/admittance \rightarrow given directly by simulation (fast) **Method 1:** Anomalous increase of R_{int} @ LV (not expected) *) Measured R_{int} by R. Lipton & M. Alyari # Backup 10: Common vs atoll p-stop - Rint/Cint # Back-up 11: Proton bulk & surface damage: CCE(x) ## Back-up 12: Proton 3L-model ☐ Heavily irradiated strip detectors demonstrate significant position dependency of CCE [CCE(x)] 3-level model within 2 µm of device surface + proton model in bulk: R_{int} & C_{int} in line w/ measured also @ high Φ & N_{ϵ} ### Test beam measured: - Strips isolated - CCE loss ~30% □ Irradiation produces shallow traps close to surface → greater drift distance, higher trapping of carriers Preliminary parametrization for Φ = 3e14 – 1.4e15 n_{eq}/cm^{-2} | Defect type | Level | $\sigma_{ m e}$ | σ_{h} | С | |--------------|---------------------|--------------------|--------------------|---------------------| | | [eV] | [cm ²] | [cm ²] | [cm ⁻³] | | Deep acc. | $E_{\rm C}$ - 0.525 | 1e-14 | 1e-14 | 1.189*⊕ + 6.454e13 | | Deep donor | $E_V + 0.48$ | 1e-14 | 1e-14 | 5.598*Ф - 3.959e14 | | Shallow acc. | E_{C} - 0.40 | 8e-15 | 2e-14 | 14.417*Φ + 3.168e16 |