High-Brightness Laser-Plasma-Based Injectors [LOI-182]

R&D devoted to implementation of high-quality, laser-plasma-based injectors for HEP applications highlighted in the 2016 Advanced Accelerator Development Strategy Report

- Future TeV-class, plasma-based colliders require beams with unprecedented quality:
 - $N_b > 10^9$, $\epsilon < 100$ nm, $\sigma_v / \gamma < 1\%$
 - → beams of interest also for a plasma-based XFEL
- Laser-plasma-based source of electrons (and positrons) is desirable
 - → compactness
 - → synchronization
- (Uncontrolled) self-injection unlikely to produce beams with simultaneously ALL required parameters
 - → sensitivity to laser and plasma parameters
 - → limited tunability (inj. & acceleration are coupled)
- Controlled injection methods have been proposed (colliding pulse inj., ionization-induced inj. w/ one or many pulses, density gradient inj., etc.)
 - → decouple injection process from acceleration yields **tunability** and **improved** beam quality
 - → some schemes already implemented but additional R&D/optimization is required for all the schemes

Two-color laser ionization injection

 \rightarrow ϵ , Q_b , σ_v can be controlled via a_i , w_i , + length of high-Z gas \rightarrow full potential realized with long wavelength drive lasers (e.g., CO_2 or Tm:YLF), but demonstration with Ti:Sa possible [L. Yu et al., PRL 2014, C.B. Schroeder, PRAB 20154]

Density gradient injection

- \rightarrow small ϵ owing to small p_{\perp} of trapped particles
- → experimentally demonstrated: stability and tunability

[C.G.R. Geddes et al., PRL 2008, A.J. Gonsalves Nat. Phys 2011, K.K. Swanson PRAB 2017, X.L. Xu, PRAB 2017]

* Summary:

- → techniques to improve beam quality have been proposed (two-color and density gradient among most promising), vigorous R&D/optimization of these concepts should be carried out;
- → if small emittance can be maintained during acceleration cooling of e-beam might not be necessary (however, plasma-based cooling techniques have been proposed [Bulanov, LOI-134]);
- → plasma-based generation of high-quality positron beams more challenging, significant R&D required [Bulanov, LOI-134].