# Developing new technologies for next-generation research facilities



#### **Future HEP collider**



Alternative beamstrahlung mitigation strategy based on short, round beams: 100x reduction in beam power and thus costs  $\sigma_{\tau} \sim 1 \ \mu m@1 \ TeV$ 

R. Blankenbecler, S. Drell, PRD 36, 277 (1987)



X-ray pulse has single spike when radiation emitted by the electrons in beam tail, travels to beam head in time shorter than few gain times  $\sigma_{z} \sim 0.1 \ \mu m @ 10 \ GeV$ 

R. Bonifacio et al. PRL 73, 70 (1994)



- Counter-streaming beam and plasma electrons result in instability and form selfgenerated beam filaments and strong EM fields.
- •Convert joule-level electron-beam energy into gamma-rays via plasma instabilities

 $\sigma_{z} \sim 0.5 \ \mu m @ 10 \ GeV$ 

A. Benedetti et al. Nature Photon. 12, 319 (2018)

### **Fully non-perturbative QED** regime



- •Beam-beam collisions of short bunches can create the largest EM fields in the universe
- •Access the regime where dynamical mass generation becomes dominant over the Higgs mechanism  $\sigma_{\tau} \sim 0.1 \ \mu m @ 100 \ GeV$

V. Yakimenko, et.al. PRL 122, 190404 (2019)

#### **Beam Physics Advancement**

- •Disruptive progress in accelerator technology is required in order to advance high energy physics
- •Ultra-short, high-intensity beams promise to facilitate seminal research opportunities far beyond HEP
- •The benefit of these opportunities outweigh the greater uncertainties associated with handling beams with such extreme parameters

## TV/m in Crystals and **Nanostructures**



Acceleration in plasmas created from crystals and nanostructures facilitate extreme gradients, continuous focusing – the properties needed for producing high-quality, high-energy beams

 $\sigma_{z} \sim 0.3 \ \mu m @ 10 \ GeV$ 

T. Tajima, et.al. PRL 59,1440 (1987)

# Ultra-Short Bunches to Enable Qualitatively New Physics

# Developing new technologies for next-generation research facilities

### SLAC

#### **Future HEP collider**



Alternative beamstrahlung mitigation strategy based on short, round beams: 100x reduction in beam power and thus costs  $\sigma_z \sim 1~\mu m @ 1~TeV$ 

R. Blankenbecler, S. Drell, PRD 36, 277 (1987)



X-ray pulse has single spike when radiation emitted by the electrons in beam tail, travels to beam head in time shorter than few gain times  $\sigma_z \sim 0.1 \ \mu m @ 10 \ GeV$ 

R. Bonifacio et al. PRL 73. 70 (1994



- Counter-streaming beam and plasma electrons result in instability and form selfgenerated beam filaments and strong EM fields.
- •Convert joule-level electron-beam energy into gamma-rays via plasma instabilities

 $\sigma_{z} \sim 0.5 \ \mu m @ 10 \ GeV$ 

A. Benedetti et al. Nature Photon. 12, 319 (2018

# Fully non-perturbative QED regime



- •Beam-beam collisions of short bunches can create the largest EM fields in the universe
- •Access the regime where dynamical mass generation becomes dominant over the Higgs mechanism  $\sigma_{\tau} \sim 0.1~\mu m @ 100~GeV$

V. Yakimenko, et.al. PRL 122, 190404 (2019)

# **Beam Physics Advancement**

- •Disruptive progress in accelerator technology is required in order to advance high energy physics
- •Ultra-short, high-intensity beams promise to facilitate seminal research opportunities far beyond HEP
- •The benefit of these opportunities outweigh the greater uncertainties associated with handling beams with such extreme parameters

# TV/m in Crystals and Nanostructures

Acceleration in plasmas created from crystals and nanostructures facilitate extreme gradients, continuous focusing – the properties needed for producing high-quality, high-energy beams

 $\sigma_{\tau} \sim 0.3 \ \mu m @ 10 \ GeV$ 

Г. Tajima, et.al. PRL 59,1440 (1987)

# Ultra-Short Bunches to Enable Qualitatively New Physics

# HEP collider with ultra short bunches and low beam power

Phil H. Bucksbaum, Gerald V. Dunne, Frederico Fiuza, Sebastian Meuren, Michael E. Peskin\*, David A. Reis, Greger Torgrimsson, Glen White, and Vitaly Yakimenko\*

#### SLAC

$$\mathcal{L} = \frac{P_b}{E_b} \frac{N}{4\pi\sigma_x \sigma_y}$$

Present designs for high energy colliders based on mitigating beamstrahlung with flat  $\sigma_x \gg \sigma_v$  and elongated bunches:

$$n_{\gamma} \propto \left(\frac{\sigma_z}{\gamma}\right)^{1/3} \left(\frac{N}{\sigma_x + \sigma_y}\right)^{2/3}; \quad \mathcal{L} \propto \frac{n_{\gamma}^{2/3}}{\sqrt{\sigma_z}\sigma_y} \frac{\sigma_x/\sigma_y + 1}{\sigma_x/\sigma_y}$$

Idea: Short bunches ->

beamstrahlung suppressed ->

round beams at IP ->

≥100x reduction in beam & wall power / backgrounds / activation / cost

Radiation Probability:  $W \approx \alpha \chi_{av}^{2/3} \frac{\sigma_z/\gamma}{\hbar}$ 

Disruption Parameter:  $D \approx \frac{2N\alpha \hat{\lambda}_c \frac{\sigma_z}{\gamma}}{\sigma_z^2}$ 

 $\sigma_{z} \sim 100 \ nm@100 \ GeV \& \sim 1 \ \mu m@1 \ TeV$ 

Can we compress bunches to sub-micron length and ~MA peak currents while mitigating CSR emittance growth?

- FACET-II S2E simulations (too be tested soon): 10GeV;  $I_p \sim 300 kA$ ,  $\sigma_z \sim 0.5 \mu m$ ,  $\Delta \epsilon_n \sim 3 -> 30 \mu m$
- FACET-III S2E simulations:

(150m compressor at 30 GeV)

 $I_p \sim 300 kA$ ,  $\sigma_z \sim 0.5 \mu m$ ,  $\Delta \epsilon_n \sim 0.5 -> < 2.5 \mu m$  $I_p \sim 100 kA$ ,  $\sigma_z \sim 1.5 \mu m$ ,  $\Delta \epsilon_n \sim 0.5 -> < 1 \mu m$ 



Short bunch and NpQED collider at 125GeV

6km compressor strawmen design