Physics Potential at Electron Proton Colliders

Oliver Fischer

for the LHeC study group

Early career meeting 22.09.20

Introduction (what it is)

- ▶ The Large Hadron electron Collider:
 - official CERN project, http://lhec.web.cern.ch/

- Very recent update LHeC study group; [arXiv:2007.14491 [hep-ex]]
- Part of the Future Circular Collider: FCC-he (hadron electron)
- Working groups: PDF, Higgs, Top, Electroweak, BSM, ...
- Well represented during the update of the European Strategy for Particle Physics.
- New technology, PERLE:
 - high power Energy Recovery Linac for Experiments in Orsay.
 - Collaboration: CERN, JLAB, STFC ASTeC Daresbury, Liverpool University, IJC Lab Orsay, BINP Novosibirsk
 - Demonstrators and prototypes exist.

Motivation (why we should care)

- High-resolution microscope: test QCD at smallest distances.
- ▶ PDF: improve precision of LHC results.
- Higgs!
- Precision from single top production.
- **.**..

Possible Layouts (where to build them)

- ► Energy Recovering Linac (e⁻ beam: 60 GeV).
- ▶ Operation of LHeC (FCC-he) concurrent with LHC (FCC-hh).
- ERL can be compatible with FCC ring design.

The detector

- Asymmetric design, "standard" HEP detector technology.
- ▶ Delphes card for LHeC and FCC-he exist.

Possible installation (LS3, data starting 2026)

Beyond the Standard Model studies

- Ideal to study common features of electrons and quarks.
- Advantages:
 - No towering (QCD) backgrounds.
 - No pileup at LHeC (very low at FCC-he).
 - Effectively triggerless.
 - Almost 4π angular acceptance.

Challenges:

- Production rates.
- Centre-of-mass energy.
- ► **Good prospects** for new physics with ...
 - ... production from vector boson fusion
 - ... multi-jet final states
 - ... forward kinematics
- Does your model fit this description? There are good chances it has not been studied yet.

I will now present a few selected BSM@ep studies.

Long-lived Higgsino searches

- Production via vector boson fusion
- ► Charginos can have very short lifetime $c\tau \sim \mu \text{m}$.
- ▶ Decay products $P_T = \mathcal{O}(100)$ MeV
- ▶ Beam remnant jet \Rightarrow primary vertex with $\mathcal{O}(10) \, \mu \mathrm{m}$ precision
- Signal: single soft displaced pion.
- ► Looks like hadronic noise, but can be detected at ep colliders!

Dark Photons at the LHeC and the FCC-he

D'Onofrio, OF, Wang; [arXiv:1909.02312 [hep-ph]]

Prospects for LHeC (1 ab-1) and FCC-eh (3 ab-1)

from G. Lanfranchi, Granada

Scalar portal at the LHeC and the FCC-he

- Higgs decays into a pair of long-lived scalar particles S.
- ▶ Scalars decay into the heaviest SM fermion: $S \rightarrow f\bar{f}$.
- ► Recent detailed study: Cheung, OF, Wang, Zurita; [arXiv:2008.09614 [hep-ph]]

Sterile neutrinos at future electron-proton colliders

- Lowscale seesaw models allow large production xsections at colliders.
- lacktriangle Parameters: mass M_N and the active-sterile mixing angles $heta_lpha$
- ► Comprehensive comparison of prospects at different collider types

Antusch, OF, Cazzato; [arXiv:1612.02728 [hep-ph]]

Many other studies

Light Sleptons and EWkinos

K. Wang, S. Iwamoto, M. D'Onofrio, G. Azuelos

Prompt EWkinos

Han, Li, Pan, Wang, [arXiv:1802.03679]

► Leptoquarks and Heavy Neutrinos

Mandal, Mitra and Sinha; Phys. Rev. D 98 (2018) no.9, 095004

Charged scalar bosons

Azuelos, Sun, Wang; [arXiv:1712.07505]

Effective Majorana Neutrino Interactions and Polarization

Duarte, Zapata, Sampayo; [arXiv:1802.07620]

Georgi-Machacheck model

Azuelos, Sun, Wang; [arXiv:1712.07505]

Extended Higgs sectors

Liu, Tang, Zhang, Zhu; [arXiV:1608.08458]

Sun, Luo, Wei, Liu; [arXiv:1710.06284]

Hernández-Sánchez, Flores-Sánchez, Honorato, Moretti, Rosado; [arXiv:1612.06316]

- ► RPV SUSY.
- Exotic/rare top decays.

Summary

- ► A lot of complementary to other colliders.
- Electron-proton collisions provide important information:
 - Study of QCD, Top, Electroweak physics.
 - Essential to fully exploit **pp** measurements due to PDF.
 - Higgs factory that can (almost) compete with **ee**.

Europe's affordable track to precision Higgs measurements and the full exploitation of the LHC

- A variety of opportunities for BSM searches:
 - VBF produced particles with compressed spectra;
 - Long lived particles;
 - Signal that looks like hadronic noise.
 - Anything that connects to electron or light quark flavors.
- Plenty of room for your ideas!

Join us on Friday for the tutorial.

