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Testing Framework Purpose

• Mimic the characteristics of a HEP data processing framework
• Similar multi-threaded behavior
• Similar I/O behavior
• Should reasonably behave like CMS, ATLAS and DUNE frameworks

• Easily try different I/O implementations
• Choose what to use via command line arguments

• Experiment agnostic
• With ability to read actual experiment ROOT files
• ROOT will dynamically load dictionaries as needed

• Make it easier to perform performance measurements
• I/O performance
• threaded scaling performance 
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Mimicry

• Only deals with processing of Events
• An Event is just a collection of Data Products

• Data Product
• Can be any C++ type
• Each Data Product can be accessed independent of all other Data Products

• Source
• Mimics reading of Events

• Outputer
• Mimics writing of Events

• Waiter
• Mimics processing of Events
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Processing

• Specify maximum number of threads to use
• Use Intel’s Threading Building Blocks to control threads
• Used by CMS, ATLAS, DUNE and ROOT

• Asynchronous calls encapsulate work to be done into a Task
• Task gets passed to TBB which runs it when a thread becomes available
• When a Task finishes, it often makes another asynchronous call

• Specify the number of concurrent Events to use
• Each Event has its own Lane
• Lanes run concurrently
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Lane

• Handles processing of one Event at a time

• Processing order
• Asynchronously requests new Event from framework
• Request goes to Source
• Makes an asynchronous request to get each Data Product
• Request goes to Source
• When get completes, start asynchronous request to the Waiter assigned to the Data 

Product
• When Waiter finishes, asynchronously signal to Outputer that a Data Product is ready
• Once Outputer is done with all data product, asynchronously signal Outputer the event is 

finished
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Source

• Each Lane has its own instance of a Source
• I plan to change this so have possibility of sharing Source between all Lanes

• Source is told which Event index to retrieve
• Tells framework when it has no more Events to retrieve which stops processing

• Source can optionally delay retrieving a Data Product until it is requested
• This is a standard behavior of HEP frameworks
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Available Source Types

• EmptySource
• Adds no Data Products to the Events

• RootSource
• Reads a ROOT file
• Reads all TBranches from a TTree with name “Events”
• Each TBranch becomes its own Data Product

• RepeatingRootSource
• Reads the first N Entries of the ROOT file and caches the Data Products to memory
• Cycles through the Data Product lists for each Event request

• HDF5Source
• coming soon

• All Sources report total time taken to read all the Events
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Waiter

• Use of Waiters can be disabled to test performance

• Waiters are configured with a scaling parameter to set sleep time
• sleep time is scaling parameter times the size of the Data Product
• Data Products size is set by Source and is the number of bytes read
• replicates the fact that larger Events take more time to process
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Outputer

• All Lanes share the same Outputer
• Calls to Outputer are all done through an asynchronous API
• This allows scheduling to handle serialization of calls if needed for thread-safety

• Outputer can optionally request to know when each Data Product ready
• This allows ability to serialize each Data Product independently

• Outputer is informed when all Data Products are finished
• This happens after all Data Product ready requests have finished
• This allows writing of all Event Data Products if required to do it together
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Available Outputer Types

• DummyOutputer
• Does nothing on each call
• Has option to turn on/off the use of Data Product ready calls

• SerializeOutputer
• applies ROOT serialization to a Data Product during its ready call
• these calls can be done concurrently
• does nothing on the event finish call
• Reports the total time spent serializing each Data Product

• RootOutputer
• coming soon

• HDF5Outputer
• coming soon
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Initial Performance Testing

• Be sure any scaling limits are not caused by the test framework itself

• Machine Used
• AMD Opteron(tm) Processor 6128
• 4 CPUs with 8 Cores per CPU

• CMS ROOT file used
• Contains standard Reconstruction output plus the RAW data
• 272 Data Products
• Wide distribution in size on disk/in memory for the different Data Products

• Testing procedure
• Number of Events processed in a job is directly proportionally to number threads used
• Exception is when jobs stop scaling with threads, then fix number events processed
• Unless otherwise noted, number of concurrent Events == number of threads
• Machine was always fully loaded
• #threads per job * # concurrently running jobs == 32
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Top Speed Test

• EmptySource, no wait, no ready calls
• Since no Data Products means no get calls are made
• Only request Event and Event finished requests are made
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RepeatingRootSource Top Speed Test

• RepeatingRootSource, no wait, no ready
• Stores all Data Products for the first 10 Events into memory
• Request Event, Data Product gets, and Event finished are called
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RepeatingRootSource and Product ready

• Same as before except tell DummyOutputer to use Product ready calls
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ROOT Serialization Scaling Performance Testing

• Use same machine
• Use same testing procedure

• Use RepeatingRootSource
• Read first 10 events of same file used in previous tests

• Use SerializeOutputer
• On Product Ready call it uses ROOT to serialize the Data Product
• measure the time it takes to do serialization
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Throughput

• See good scaling
• 88% efficient at 32 threads
• Possible sign of a minor concurrency issue?
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Time Doing Serialization

• 50% of total serialization time is spent by just 4 Data Products
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Time Doing Serialization

• Time to do same amount of serialization increases with number of threads
• 10% longer at 32 threads
• Relative fraction of serialization changes with number of threads
• Two of the Data Products appear to have different thread scaling
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Root Serialization with 1 Event and Multiple-Threads

• Vary number of threads but only allow 1 concurrent Event

• Throughput
• Have good throughput for 2 threads and then diminishing returns
• Expected behavior given 4 Data Products dominate serialization time
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Root Serialization with 1 Event and Multiple-Threads (cont)

• Total Serialization Time
• No obvious trend for serialization time as a function of threads
• Still see the different thread scaling for the 2 Data Products
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Conclusion

• The testing framework seems adequate for performance measurements
• Scaling limits are well below realistic rates

• No signs of major synchronization problems in ROOT serialization
• Further investigation would require much higher thread counts

• For realistic CMS data files concurrent serialization provides some benefit
• The large variations in Data Product serialization times limits the concurrency gain

• Code can be found here
• https://github.com/Dr15Jones/root_serialization
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