
Dr Christopher Jones
CCE IOS
23 September 2020

Testing Framework and Early Performance Results

9/23/2020 C Jones I Testing Framework and Early Performance Results

Testing Framework Purpose

• Mimic the characteristics of a HEP data processing framework
• Similar multi-threaded behavior
• Similar I/O behavior
• Should reasonably behave like CMS, ATLAS and DUNE frameworks

• Easily try different I/O implementations
• Choose what to use via command line arguments

• Experiment agnostic
• With ability to read actual experiment ROOT files
• ROOT will dynamically load dictionaries as needed

• Make it easier to perform performance measurements
• I/O performance
• threaded scaling performance

2

9/23/2020 C Jones I Testing Framework and Early Performance Results

Mimicry

• Only deals with processing of Events
• An Event is just a collection of Data Products

• Data Product
• Can be any C++ type
• Each Data Product can be accessed independent of all other Data Products

• Source
• Mimics reading of Events

• Outputer
• Mimics writing of Events

• Waiter
• Mimics processing of Events

3

9/23/2020 C Jones I Testing Framework and Early Performance Results

Processing

• Specify maximum number of threads to use
• Use Intel’s Threading Building Blocks to control threads
• Used by CMS, ATLAS, DUNE and ROOT

• Asynchronous calls encapsulate work to be done into a Task
• Task gets passed to TBB which runs it when a thread becomes available
• When a Task finishes, it often makes another asynchronous call

• Specify the number of concurrent Events to use
• Each Event has its own Lane
• Lanes run concurrently

4

9/23/2020 C Jones I Testing Framework and Early Performance Results

Lane

• Handles processing of one Event at a time

• Processing order
• Asynchronously requests new Event from framework
• Request goes to Source
• Makes an asynchronous request to get each Data Product
• Request goes to Source
• When get completes, start asynchronous request to the Waiter assigned to the Data

Product
• When Waiter finishes, asynchronously signal to Outputer that a Data Product is ready
• Once Outputer is done with all data product, asynchronously signal Outputer the event is

finished

5

DP 1

DP 2

Get 1

Get 2

Wait 1

Wait 2

Ready 1

Ready 2

Finish
Out

Event

Source

9/23/2020 C Jones I Testing Framework and Early Performance Results

Source

• Each Lane has its own instance of a Source
• I plan to change this so have possibility of sharing Source between all Lanes

• Source is told which Event index to retrieve
• Tells framework when it has no more Events to retrieve which stops processing

• Source can optionally delay retrieving a Data Product until it is requested
• This is a standard behavior of HEP frameworks

6

9/23/2020 C Jones I Testing Framework and Early Performance Results

Available Source Types

• EmptySource
• Adds no Data Products to the Events

• RootSource
• Reads a ROOT file
• Reads all TBranches from a TTree with name “Events”
• Each TBranch becomes its own Data Product

• RepeatingRootSource
• Reads the first N Entries of the ROOT file and caches the Data Products to memory
• Cycles through the Data Product lists for each Event request

• HDF5Source
• coming soon

• All Sources report total time taken to read all the Events

7

9/23/2020 C Jones I Testing Framework and Early Performance Results

Waiter

• Use of Waiters can be disabled to test performance

• Waiters are configured with a scaling parameter to set sleep time
• sleep time is scaling parameter times the size of the Data Product
• Data Products size is set by Source and is the number of bytes read
• replicates the fact that larger Events take more time to process

8

9/23/2020 C Jones I Testing Framework and Early Performance Results

Outputer

• All Lanes share the same Outputer
• Calls to Outputer are all done through an asynchronous API
• This allows scheduling to handle serialization of calls if needed for thread-safety

• Outputer can optionally request to know when each Data Product ready
• This allows ability to serialize each Data Product independently

• Outputer is informed when all Data Products are finished
• This happens after all Data Product ready requests have finished
• This allows writing of all Event Data Products if required to do it together

9

9/23/2020 C Jones I Testing Framework and Early Performance Results

Available Outputer Types

• DummyOutputer
• Does nothing on each call
• Has option to turn on/off the use of Data Product ready calls

• SerializeOutputer
• applies ROOT serialization to a Data Product during its ready call
• these calls can be done concurrently
• does nothing on the event finish call
• Reports the total time spent serializing each Data Product

• RootOutputer
• coming soon

• HDF5Outputer
• coming soon

10

9/23/2020 C Jones I Testing Framework and Early Performance Results

Initial Performance Testing

• Be sure any scaling limits are not caused by the test framework itself

• Machine Used
• AMD Opteron(tm) Processor 6128
• 4 CPUs with 8 Cores per CPU

• CMS ROOT file used
• Contains standard Reconstruction output plus the RAW data
• 272 Data Products
• Wide distribution in size on disk/in memory for the different Data Products

• Testing procedure
• Number of Events processed in a job is directly proportionally to number threads used
• Exception is when jobs stop scaling with threads, then fix number events processed
• Unless otherwise noted, number of concurrent Events == number of threads
• Machine was always fully loaded
• #threads per job * # concurrently running jobs == 32

11

9/23/2020 C Jones I Testing Framework and Early Performance Results

Top Speed Test

• EmptySource, no wait, no ready calls
• Since no Data Products means no get calls are made
• Only request Event and Event finished requests are made

12

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

1.3E+06

1.4E+06

1.4E+06

1.5E+06

1.5E+06

1.6E+06

Number of Threads/Concurrent Events
0 8 16 24 32

No Scaling

Standard CMS processing
rate is 0.1 Ev/sec/thread

This is 7 orders of magnitude
higher >> not a problem

9/23/2020 C Jones I Testing Framework and Early Performance Results

RepeatingRootSource Top Speed Test

• RepeatingRootSource, no wait, no ready
• Stores all Data Products for the first 10 Events into memory
• Request Event, Data Product gets, and Event finished are called

13

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0.0E+00

2.6E+05

5.2E+05

7.8E+05

1.0E+06

1.3E+06

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e

Th
ro

ug
hp

ut
 p

er

Th
re

ad
0.8

0.85

0.9

0.95

1

1.05

1.1

Number of Threads/Concurrent Events
0 8 16 24 32

Good Scaling till hit limit at 24 threads

9/23/2020 C Jones I Testing Framework and Early Performance Results

RepeatingRootSource and Product ready

• Same as before except tell DummyOutputer to use Product ready calls

14

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

ec
)

0

2400

4800

7200

9600

12000

Number of Threads/Concurrent Events
0 8 16 24 32

No Scaling

100x slower peak than before

Time spent in Source (not shown)
also 100x slower even though exact
same function call

Supposition: The extra work has
caused the CPU caches to flush
so extra time is handling cache misses

This is 5 orders of magnitude
higher >> probably OK

9/23/2020 C Jones I Testing Framework and Early Performance Results

ROOT Serialization Scaling Performance Testing

• Use same machine
• Use same testing procedure

• Use RepeatingRootSource
• Read first 10 events of same file used in previous tests

• Use SerializeOutputer
• On Product Ready call it uses ROOT to serialize the Data Product
• measure the time it takes to do serialization

15

9/23/2020 C Jones I Testing Framework and Early Performance Results

Throughput

• See good scaling
• 88% efficient at 32 threads
• Possible sign of a minor concurrency issue?

16

Ev
en

t T
hr

ou
gh

pu
t (

Ev
/s

)

0

450

900

1350

1800

2250

Number of Threads/Concurrent Events
0 8 16 24 32

Re
la

tiv
e

Th
ro

ug
hp

ut
 p

er

Th
re

ad
0.8

0.85

0.9

0.95

1

1.05

1.1

Number of Threads/Concurrent Events
0 8 16 24 32

Relative Throughput per Thread

9/23/2020 C Jones I Testing Framework and Early Performance Results

Time Doing Serialization

• 50% of total serialization time is spent by just 4 Data Products

17

Pe
rc

en
ta

ge
 o

f T
ot

al
 S

er
ia

liz
at

io
n

Ti
m

e

0.00

7.50

15.00

22.50

30.00

Data Product

Fr
ac

tio
n

of
 T

ot
al

 S
er

ia
liz

at
io

n
Ti

m
e

1E-05

1E-04

1E-03

1E-02

1E-01

Data Products

9/23/2020 C Jones I Testing Framework and Early Performance Results

Time Doing Serialization

• Time to do same amount of serialization increases with number of threads
• 10% longer at 32 threads
• Relative fraction of serialization changes with number of threads
• Two of the Data Products appear to have different thread scaling

18

Re
la

tiv
e

Se
ria

liz
at

io
n

Ti
m

e
pe

r T
hr

ea
d

0.9

0.95

1

1.05

1.1

1.15

Number of Threads/Concurrent Events
0 8 16 24 32

Fr
ac

tio
n

of
 T

ot
al

 S
er

ia
liz

at
io

n
TI

m
e

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Number of Thread/Concurrent Events
0 8 16 24 32

Relative CaloTowers Relative HFPreRecHits
Relative HBHERecHits Relative FEDRawData

9/23/2020 C Jones I Testing Framework and Early Performance Results

Root Serialization with 1 Event and Multiple-Threads

• Vary number of threads but only allow 1 concurrent Event

• Throughput
• Have good throughput for 2 threads and then diminishing returns
• Expected behavior given 4 Data Products dominate serialization time

19

Th
ro

ug
hp

ut
 (E

v/
s)

0

52

104

156

208

260

Number of Threads
0 2 4 6 8

Th
ro

ug
hp

ut
 R

el
at

iv
e

to
 1

 T
hr

ea
d

ca
se

0

1

2

3

4

Number of Threads
0 2 4 6 8

9/23/2020 C Jones I Testing Framework and Early Performance Results

Root Serialization with 1 Event and Multiple-Threads (cont)

• Total Serialization Time
• No obvious trend for serialization time as a function of threads
• Still see the different thread scaling for the 2 Data Products

20

Re
la

tiv
e

Se
ria

liz
at

io
n

Ti
m

e
pe

r T
hr

ea
d

1

1.01

1.02

1.03

1.04

Number of Threads
0 2 4 6 8

Fr
ac

tio
n

of
 T

ot
al

 S
er

ia
liz

at
io

n
TI

m
e

0

0.04

0.08

0.12

0.16

0.2

0.24

0.28

Number of Threads
0 2 4 6 8

Relative CaloTowers Relative HFPreRecHits
Relative HBHERecHits Relative FEDRawData

9/23/2020 C Jones I Testing Framework and Early Performance Results

Conclusion

• The testing framework seems adequate for performance measurements
• Scaling limits are well below realistic rates

• No signs of major synchronization problems in ROOT serialization
• Further investigation would require much higher thread counts

• For realistic CMS data files concurrent serialization provides some benefit
• The large variations in Data Product serialization times limits the concurrency gain

• Code can be found here
• https://github.com/Dr15Jones/root_serialization

21

https://github.com/Dr15Jones/root_serialization
https://github.com/Dr15Jones/root_serialization

