/\.% .S. DEPARTMENT OF Office of

#Fermilab 5*(%>ENERGY Science

Testing Framework and Early Performance Results

Dr Christopher Jones
CCE 10S
23 September 2020

Testing Framework Purpose

* Mimic the characteristics of a HEP data processing framework

2

« Similar multi-threaded behavior
« Similar 1/0O behavior

» Should reasonably behave like CMS, ATLAS and DUNE frameworks

Easily try different /O implementations

* Choose what to use via command line arguments

Experiment agnostic

» With ability to read actual experiment ROQOT files
« ROOT will dynamically load dictionaries as needed

Make it easier to perform performance measurements

* |/O performance
* threaded scaling performance

9/23/2020

C Jones | Testing Framework and Early Performance Results

2= Fermilab

Mimicry

Only deals with processing of Events

An Event is just a collection of Data Products

Data Product
* Can be any C++ type

* Each Data Product can be accessed independent of all other Data Products

Source

* Mimics reading of Events

Outputer

* Mimics writing of Events

Waiter

* Mimics processing of Events

9/23/2020

C Jones | Testing Framework and Early Performance Results

2= Fermilab

Processing

* Specify maximum number of threads to use

* Use Intel’s Threading Building Blocks to control threads
« Used by CMS, ATLAS, DUNE and ROOT

* Asynchronous calls encapsulate work to be done into a Task
* Task gets passed to TBB which runs it when a thread becomes available
* When a Task finishes, it often makes another asynchronous call

* Specify the number of concurrent Events to use
* Each Event has its own Lane
* Lanes run concurrently

3F Fermilab
4 9/23/2020 C Jones | Testing Framework and Early Performance Results

Lane

* Handles processing of one Event at a time

Event

[0P 1 > ((Gett J»{(Weit i }—>{((Reay 1)—> [
DP 2 —>(Get 2 mem)-»(neadyz)—» out

* Processing order
* Asynchronously requests new Event from framework
« Request goes to Source
* Makes an asynchronous request to get each Data Product
* Request goes to Source

* When get completes, start asynchronous request to the Waiter assigned to the Data
Product

* When Waiter finishes, asynchronously signal to Outputer that a Data Product is ready

* Once Outputer is done with all data product, asynchronously signal Outputer the event is
finished

3¢ Fermilab
5 9/23/2020 C Jones | Testing Framework and Early Performance Results

Source

* Each Lane has its own instance of a Source
* | plan to change this so have possibility of sharing Source between all Lanes

* Source is told which Event index to retrieve
* Tells framework when it has no more Events to retrieve which stops processing

* Source can optionally delay retrieving a Data Product until it is requested
 This is a standard behavior of HEP frameworks

3F Fermilab
6 9/23/2020 C Jones | Testing Framework and Early Performance Results

Available Source Types

7

EmptySource
 Adds no Data Products to the Events

RootSource
 Reads a ROOT file

 Reads all TBranches from a TTree with name “Events”

« Each TBranch becomes its own Data Product

RepeatingRootSource
* Reads the first N Entries of the ROQOT file and caches the Data Products to memory

 Cycles through the Data Product lists for each Event request

HDF5Source
* coming soon

All Sources report total time taken to read all the Events

9/23/2020

C Jones | Testing Framework and Early Performance Results

2= Fermilab

Waiter

* Use of Waiters can be disabled to test performance

* Waiters are configured with a scaling parameter to set sleep time

* sleep time is scaling parameter times the size of the Data Product
« Data Products size is set by Source and is the number of bytes read

* replicates the fact that larger Events take more time to process

3F Fermilab
8 9/23/2020 C Jones | Testing Framework and Early Performance Results

Outputer

* All Lanes share the same Outputer

* Calls to Outputer are all done through an asynchronous API
 This allows scheduling to handle serialization of calls if needed for thread-safety

* Qutputer can optionally request to know when each Data Product ready
* This allows ability to serialize each Data Product independently

* Qutputer is informed when all Data Products are finished
* This happens after all Data Product ready requests have finished
* This allows writing of all Event Data Products if required to do it together

3F Fermilab
9 9/23/2020 C Jones | Testing Framework and Early Performance Results

Available Outputer Types

* DummyOutputer
* Does nothing on each call
* Has option to turn on/off the use of Data Product ready calls

* SerializeOutputer

» applies ROOT serialization to a Data Product during its ready call
* these calls can be done concurrently

 does nothing on the event finish call

* Reports the total time spent serializing each Data Product

RootOutputer
* coming soon

HDF5Qutputer
* coming soon

3¢ Fermilab
10 9/23/2020 C Jones | Testing Framework and Early Performance Results

Initial Performance Testing

* Be sure any scaling limits are not caused by the test framework itself

* Machine Used
* AMD Opteron(tm) Processor 6128
* 4 CPUs with 8 Cores per CPU

« CMS ROOT file used

» Contains standard Reconstruction output plus the RAW data
« 272 Data Products
« Wide distribution in size on disk/in memory for the different Data Products

 Testing procedure
* Number of Events processed in a job is directly proportionally to number threads used
« Exception is when jobs stop scaling with threads, then fix number events processed
* Unless otherwise noted, number of concurrent Events == number of threads
* Machine was always fully loaded
* #threads per job * # concurrently running jobs == 32

3¢ Fermilab
11 9/23/2020 C Jones | Testing Framework and Early Performance Results

Top Speed Test

* EmptySource, no wait, no ready calls
 Since no Data Products means no get calls are made
* Only request Event and Event finished requests are made

1.6E+06

.l-

: __ 1.5E+06
No Scaling 2
&

Standard CMS processing R
rate is 0.1 Ev/sec/thread §’

;3 1.4E+06
|_
This is 7 orders of magnitude &
>

higher >> not a problem " 1.4E106

1.3E+06

0 8 16 24 32

Number of Threads/Concurrent Events

3F Fermilab
12 9/23/2020 C Jones | Testing Framework and Early Performance Results

RepeatingRootSource Top Speed Test

* RepeatingRootSource, no wait, no ready
» Stores all Data Products for the first 10 Events into memory
* Request Event, Data Product gets, and Event finished are called

1.3E+06 i | 1.1
|
9 5
2 1.0E+06 o 105
e
>

T 3 1
=+ C
e 2 ©
®) O O 0095
D) T C
O 5.2E+05 =
c o 0.9
= =
T 2 6E405 o

. ()]
S 2 0.85
LLl

0.0E+00 0.8

0 8 16 24 32 0 8 16 24 30

Number of Threads/Concurrent Events Number of Threads/Concurrent Events

Good Scaling till hit limit at 24 threads

3¢ Fermilab
13 9/23/2020 C Jones | Testing Framework and Early Performance Results

RepeatingRootSource and Product ready

« Same as before except tell DummyOutputer to use Product ready calls

No Scaling 12000

100x slower peak than before 9600

Time spent in Source (not shown)
also 100x slower even though exact
same function call

7200

4800

Event Throughput (Ev/sec)

Supposition: The extra work has
caused the CPU caches to flush
so extra time is handling cache misses

2400

0 8 16 24 32
This is 5 orders of magnitude Number of Threads/Concurrent Events

higher >> probably OK

3¢ Fermilab
14 9/23/2020 C Jones | Testing Framework and Early Performance Results

ROOT Serialization Scaling Performance Testing

* Use same machine
* Use same testing procedure

* Use RepeatingRootSource
* Read first 10 events of same file used in previous tests

* Use SerializeOutputer

* On Product Ready call it uses ROOT to serialize the Data Product
* measure the time it takes to do serialization

3¢ Fermilab
15 9/23/2020 C Jones | Testing Framework and Early Performance Results

Throughput

* See good scaling
* 88% efficient at 32 threads
* Possible sign of a minor concurrency issue?

2250 + Relative Throughput per Thread

—
(00}
o
o

—h
W
)
o

Event Throughput (Ev/s)
Relative Throughput per
Thread
o
&

900
0.9
450 0.85
0.8
0 0 8 16 24 32
0 8 16 24 32

Number of Threads/Concurrent Events
Number of Threads/Concurrent Events

3¢ Fermilab
16 9/23/2020 C Jones | Testing Framework and Early Performance Results

Time Doing Serialization

* 50% of total serialization time is spent by just 4 Data Products

30.00
1E-01
(b}
O S
£ =
= 2250 o)
c =
9 N 1E-02
N S
©)
2 2
@ 15.00 %
*g | - 1E-03
= ke
(V-
[e) C
Q =
4] ©
-+ j-
(]CJ LL
o 7.50 1E-04
(O}
o
0.00 1E-05
Data Product Data Products

3F Fermilab
17 9/23/2020 C Jones | Testing Framework and Early Performance Results

Time Doing Serialization

 Time to do same amount of serialization increases with number of threads
* 10% longer at 32 threads

* Relative fraction of serialization changes with number of threads
* Two of the Data Products appear to have different thread scaling

1.15 0.28
- —t | l l
3 2 | | |)
c £ 024
I_
= 1.1 _ _ l _
e c + |Relative CaloTowers Relative HFPreRecHits
@ 9 3¢ |Relative HBHERecHits Relative FEDRawData
Q = 0.2
o) N
£ 1.05 S
—_— s 0.16 | ‘
S)
g g 012 | |
= =
% 0.08
5
D 095 2
E @ 0.04
()] LL
o
0.9 0
0 8 16 24 32 0 8 16 24 32
Number of Threads/Concurrent Events Number of Thread/Concurrent Events
2= Fermilab

18 9/23/2020 C Jones | Testing Framework and Early Performance Results

Throughput (Ev/s)

Root Serialization with 1 Event and Multiple-Threads

* Vary number of threads but only allow 1 concurrent Event

* Throughput
* Have good throughput for 2 threads and then diminishing returns
* Expected behavior given 4 Data Products dominate serialization time

260

208

-
(&)
(0))

-
o
AN

52

19

—+

9/23/2020

4 6 8
Number of Threads

C Jones | Testing Framework and Early Performance Results

Throughput Relative to 1 Thread case

4

4
Number of Threads

8

2% Fermilab

Root Serialization with 1 Event and Multiple-Threads (cont)

* Total Serialization Time
* No obvious trend for serialization time as a function of threads
« Still see the different thread scaling for the 2 Data Products

1.04 0.28
o) o | 1
< g 0.24 T T T
— =
— c + Relative CaloTt % Relative HFPreRecHit
8_ 1.03 O % RZZt!Xi HEI?IE%V(\g:its RZZt!ﬁ FEDquea Igatlas

+= 0.2
0 §
£ o
= S 0.16 ”o—
c
o 1.02 N
e —
o

_‘N“ |§ 0.12
o ”\“\”-
-— Y—
3 1o © 000 ———

) c
2 S
E (Cé 0.04
() LL
= 1 0

0 2 4 6 8 0 2 4 6 8
Number of Threads Number of Threads

3F Fermilab
20 9/23/2020 C Jones | Testing Framework and Early Performance Results

Conclusion

* The testing framework seems adequate for performance measurements
 Scaling limits are well below realistic rates

* No signs of major synchronization problems in ROOT serialization
 Further investigation would require much higher thread counts

* For realistic CMS data files concurrent serialization provides some benefit
* The large variations in Data Product serialization times limits the concurrency gain

* Code can be found here
* https://github.com/Dr15Jones/root_serialization

3F Fermilab
21 9/23/2020 C Jones | Testing Framework and Early Performance Results

https://github.com/Dr15Jones/root_serialization
https://github.com/Dr15Jones/root_serialization

