

# **Precision (hyperon) physics at high luminosity (HL)** *J*/ψ factory Andrzej Kupsc, Hai-Bo Li, and Stephen Lars Olsen

 $e^+e^- 
ightarrow J/\psi 
ightarrow \Lambda \overline{\Lambda}$  ,  $\overline{\Xi}^-\overline{\Xi}^+$ 

**Experiment at BESIII** 

nature physics

Polarization and entanglement in baryonantibaryon pair production in electron-positron annihilation

The BESIII Collaboration\*

Nature Phys. 15 (2019) 631

https://doi.org/10.1038/s41567-019-04

- Prospects at HL  $J/\psi$  Factory: polarization, energy compensation
- Bonus:  $\eta'$  super factory ...

**Snowmass** 2<sup>nd</sup> Oct. 2020 Townhall meeting





### **CP violation in hyperon decays**



For  $\Lambda \rightarrow p\pi^-$  admixture of  $|\Delta I| = 3/2$  (~1/22)

decay parameters:

$$\alpha = 2 \operatorname{Re} S^* P e^{i(\delta p - \delta s)}$$

 $\beta = 2 \operatorname{Im} S^* P e^{i(\delta p - \delta s)}$ 



$$\frac{d\Gamma}{d\Omega} = \frac{1}{4\pi} (1 + \alpha_{-}\hat{n} \, \bar{P}_{\Lambda})$$

 $\alpha_{\Lambda}$ = 0.750±0.010  $\alpha_{\Xi}$ =-0.392±0.008  $\beta_{\Lambda}$ =-0.075±0.040

 $\beta_{\Xi}$ =-0.034±0.013

Accesible if daughter baryon polarization measured eg decay sequence:  $\Xi \rightarrow \Lambda \pi, \Lambda \rightarrow p\pi$ 

#### **Testing CP violation in hyperon decays (say Ξ)**

Experimentally accessible two decay parameters:

$$\alpha = 2 \operatorname{Re} S^* P e^{i(\delta p - \delta s)}$$

 $\beta = 2 \operatorname{Im} S^* P e^{i(\delta p - \delta s)}$ 

#### In the leading order:



# Can one observe strange baryon CPV? $\Xi^- \rightarrow \Lambda \pi^- \rightarrow p \pi^- \pi^ A_{\Xi\Lambda} \approx A_{\Xi} + A_{\Lambda} = (0.0 \pm 5.1 \pm 4.4) \times 10^{-4}$ $\underline{[\alpha(\Xi^-)\alpha_-(\Lambda) - \alpha(\Xi^+)\alpha_+(\overline{\Lambda})]}$ present best limits... $[\alpha(\Xi^-)\alpha_-(\Lambda) + \alpha(\overline{\Xi^+})\alpha_+(\overline{\Lambda})]$ HyperCP PRL 93 (2004) 262001

 $1.2 \times 10^8 \Xi^- 4.1 \times 10^7 \overline{\Xi}^+$ 



$$e^+e^- \rightarrow J/\psi \rightarrow \Xi^-\overline{\Xi}^+ \rightarrow \Lambda \pi^-\overline{\Lambda}\pi^+ \rightarrow p\pi^-\pi^-\overline{p}\pi^+\pi^+$$

 $-3 \times 10^{-5} \le A_{\Lambda} \le 4 \times 10^{-5}$ -2 × 10^{-5}  $\le A_{\Xi} \le 1 \times 10^{-5}$  CKM -5 × 10^{-5}  $\le A_{\Xi\Lambda} \le 5 \times 10^{-5}$ 

Tandean, Valencia PRD67 (2003) 056001

# $J/\psi, \psi(2S) \rightarrow B\overline{B}$ Number of events at BESIII

|                                          |                                      |                          |                | BESIII                   |
|------------------------------------------|--------------------------------------|--------------------------|----------------|--------------------------|
| decay mode                               | $\mathcal{B}(\text{units } 10^{-4})$ | $lpha_{oldsymbol{\psi}}$ | $\mathbf{eff}$ | 1010 I /Jr               |
|                                          |                                      |                          |                | 10 J/ψ                   |
|                                          | 10.42 + 0.02 + 0.22                  | 0.400 1.0.000            | 1007           | 2200 103                 |
| $J/\psi \to \Lambda\Lambda$              | $19.43 \pm 0.03 \pm 0.33$            | $0.469 \pm 0.026$        | 40%            | $3200 \times 10^{\circ}$ |
| $\psi(2S) \to \Lambda \bar{\Lambda}$     | $3.97 \pm 0.02 \pm 0.12$             | $0.824 \pm 0.074$        | 40%            | $650 \times 10^{3}$      |
| $J/\psi \to \Xi^0 \bar{\Xi}^0$           | $11.65\pm0.04$                       | $0.66 \pm 0.03$          | 14%            | $670 \times 10^{3}$      |
| $\psi(2S) \rightarrow \Xi^0 \bar{\Xi}^0$ | $2.73 \pm 0.03$                      | $0.65 \pm 0.09$          | 14%            | $160 \times 10^{3}$      |
| $J/\psi \rightarrow \Xi^- \bar{\Xi}^+$   | $10.40 \pm 0.06$                     | $0.58\pm0.04$            | 19%            | $810 \times 10^3$        |
| $\psi(2S) \to \Xi^- \bar{\Xi}^+$         | $2.78 \pm 0.05$                      | $0.91 \pm 0.13$          | 19%            | $210 \times 10^{3}$      |

PRD 93, 072003 (2016) PLB770,217 (2017) PRD 95, 052003 (2017)



 $\mathcal{B}(\Lambda \to p\pi^-) = 0.639(5)$ 

## **Exclusive** joint angular distribution

$$e^+e^- \rightarrow (\Lambda \rightarrow p\pi^-)(\overline{\Lambda} \rightarrow \overline{p}\pi^+)$$

 $\Lambda \to p\pi^{-}: \widehat{\mathbf{n}}_{1} \to (\cos \theta_{1}, \phi_{1}) : \boldsymbol{\alpha}_{\Lambda} \qquad \overline{\Lambda} \xrightarrow{\vee} \overline{p}\pi^{+}: \widehat{\mathbf{n}}_{2} \to (\cos \theta_{2}, \phi_{2}) : \overline{\boldsymbol{\alpha}}_{\Lambda}$ 

 $\boldsymbol{\xi}:(\cos\theta_{\Lambda},\widehat{\mathbf{n}}_{1},\widehat{\mathbf{n}}_{2})$  5D PhSp

 $d\Gamma \propto W(\boldsymbol{\xi}; \boldsymbol{\alpha}_{\psi}, \boldsymbol{\Delta}\boldsymbol{\Phi}, \boldsymbol{\alpha}_{\Lambda}, \overline{\boldsymbol{\alpha}}_{\Lambda}) =$  $1 + \alpha_{\psi} \cos^2 \theta_{\Lambda}$  Cross section  $+ \alpha_{\Lambda} \overline{\alpha}_{\Lambda} \left\{ \sin^2 \theta_{\Lambda} (n_{1,x} n_{2,x} - \alpha_{\psi} n_{1,y} n_{2,y}) + (\cos^2 \theta_{\Lambda} + \alpha_{\psi}) n_{1,z} n_{2,z} \right\}$  $+ \alpha_{\Lambda} \overline{\alpha}_{\Lambda} \sqrt{1 - \alpha_{\psi}^{2}} \cos(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} (n_{1,x} n_{2,z} + n_{1,z} n_{1,x})$  $+ \sqrt{1 - \alpha_{\psi}^{2} \sin(\Delta \Phi) \sin \theta_{\Lambda} \cos \theta_{\Lambda} (\alpha_{\Lambda} n_{1,y} + \overline{\alpha}_{\Lambda} n_{2,y})} \frac{1}{Polarization}$  $\Delta \Phi \neq \mathbf{0} \Rightarrow \mathbf{independent}$  determination of  $\alpha_{\Lambda}$  and  $\overline{\alpha}_{\Lambda}$ 

Fäldt, Kupsc PLB772 (2017) 16

Baryon-antibaryon spin density matrix (unpolarized)  $e^+e^- \rightarrow B_1\overline{B}_2$ 

**General two spin** <sup>1</sup>/<sub>2</sub> **particle state:** 

$$\rho_{1/2,\overline{1/2}} = \frac{1}{4} \sum_{\mu \overline{\nu}} C_{\mu \overline{\nu}} \sigma_{\mu}^{B_1} \otimes \sigma_{\overline{\nu}}^{\overline{B}_2}$$



$$\beta_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \sin(\Delta \Phi) \quad \gamma_{\psi} = \sqrt{1 - \alpha_{\psi}^2} \cos(\Delta \Phi)$$

Angular distribution:

$$\frac{d\Gamma}{d\Omega} \propto 1 + \boldsymbol{\alpha}_{\boldsymbol{\psi}} \cos^2 \theta \qquad -1 \leq \boldsymbol{\alpha}_{\boldsymbol{\psi}} \leq 1$$



#### E.Perotti, G.Faldt, AK, S.Leupold, JJ.Song PRD99 (2019)056008

# **BESIII result**

BESI

 $e^+e^- \to (\Lambda \to p\pi^-)(\overline{\Lambda} \to \overline{p}\pi^+)$ 



| Parameters          | This work                    | Previous results   |        |  |  |
|---------------------|------------------------------|--------------------|--------|--|--|
| $lpha_\psi$         | $0.461 \pm 0.006 \pm 0.007$  | $0.469 \pm 0.027$  | BESIII |  |  |
| $\Delta \Phi$ (rad) | $0.740 \pm 0.010 \pm 0.008$  | _                  |        |  |  |
| $\alpha_{-}$        | $0.750 \pm 0.009 \pm 0.004$  | $0.642\pm0.013$    | PDG    |  |  |
| $lpha_+$            | $-0.758 \pm 0.010 \pm 0.007$ | $-0.71 {\pm} 0.08$ | PDG    |  |  |
| $ar{lpha}_0$        | $-0.692 \pm 0.016 \pm 0.006$ | _                  |        |  |  |

BESIII Nature Phys. 15 (2019) 631

# **Prospects for CP tests** $J/\psi \rightarrow \Lambda \overline{\Lambda}$

CP test:
$$A_{\Lambda} = \frac{\alpha_{-} + \alpha_{+}}{\alpha_{-} - \alpha_{+}}$$
 $J/\psi \to \Lambda \overline{\Lambda}$  $A_{\Lambda} = -0.006 \pm 0.012 \pm 0.007$ **BESII**

|                   | Events                | Stat error $A_{\Lambda}$      |                                                                                  |
|-------------------|-----------------------|-------------------------------|----------------------------------------------------------------------------------|
| BESIII(2018)      | 4.2 ·10 <sup>5</sup>  | <b>1.2</b> · 10 <sup>-2</sup> | 1.31 10 <sup>9</sup> J/ψ                                                         |
| BESIII(full stat) | 3.2 ·10 <sup>6</sup>  | 4.4 ·10 <sup>-3</sup>         | 10 <sup>10</sup> J/ψ<br>L=0.47·10 <sup>33</sup> cm <sup>-2</sup> s <sup>-1</sup> |
| SCTF              | 4.5 · 10 <sup>8</sup> | 3.1 ·10 <sup>-4</sup>         | 2·10 <sup>12</sup> J/ψ L=10 <sup>35</sup> cm <sup>-2</sup> s <sup>-1</sup>       |

 $|A_{\Lambda}| \le 4 \times 10^{-5}$  CKM Tandean, Valencia PRD67 (2003) 056001

## **Polarized** *e*<sup>-</sup> beam



## **Monochromator**



Goal for HL  $J/\psi$  Factory: >10<sup>13</sup>  $J/\Psi$ 

## η' Super Factory

|   | J/'                             |         |               |                          | рсст               |                                  |                   |                       |          |             |
|---|---------------------------------|---------|---------------|--------------------------|--------------------|----------------------------------|-------------------|-----------------------|----------|-------------|
|   | <br>→ η'γ                       |         |               |                          |                    |                                  |                   | hard                  | ЭШ       |             |
|   | → <b>η</b> φ(→ K <sup>+</sup> K |         |               | ( <sup>-</sup> )         | 1010               |                                  | <sup>10</sup> J/Ψ | <sup>γ</sup> J/Ψ →    | 5×107 n' |             |
| 2 |                                 |         |               | → ηγ                     |                    |                                  |                   |                       |          |             |
| 0 | 10                              | 1       | 20            | 30                       | 40                 | 50<br>BR×10 <sup>4</sup>         |                   |                       |          | 194         |
|   | -                               | De      | cay N         | ſode                     | $\varepsilon~(\%)$ | $\mathcal{B}(\times 10^{\circ})$ | $()^{-4})$        |                       |          | an if the s |
|   | 10.20                           | $\eta'$ | $\rightarrow$ | $\pi^+\pi^-\pi^0$        | 25.3               | 35.91                            | $\pm$             | $0.54 \pm 1.74$       |          | Will Long   |
|   |                                 |         |               | $(\pi^+\pi^-\pi^0)_S$    | 26.2               | 37.63                            | $\pm$             | $0.77 \pm 2.22 \pm 4$ | 4.48     |             |
|   |                                 | $\eta'$ | $\rightarrow$ | $\pi^0\pi^0\pi^0$        | 8.8                | 35.22                            | $\pm$             | $0.82 \pm 2.60$       |          | 1 20643     |
|   |                                 | $\eta'$ | $\rightarrow$ | $e^+e^-\gamma$           | 24.5               | 4.69                             | ±                 | $0.20\pm0.23$         |          |             |
|   |                                 | $\eta'$ | $\rightarrow$ | $e^+e^-\omega$           | 5.45               | 1.97                             | $\pm$             | $0.34 \pm 0.17$       |          |             |
|   |                                 | $\eta'$ | $\rightarrow$ | $\gamma\gamma\pi^{ m o}$ | 15.9               | 6.16                             | $\pm$             | $0.64 \pm 0.67$       |          |             |
|   |                                 | $\eta'$ | $\rightarrow$ | $\pi^+\pi^-\pi^+\pi^-$   | 34.5               | 0.853                            | ±                 | $0.069 \pm 0.069$     |          |             |
|   |                                 | $\eta'$ | $\rightarrow$ | $\pi^+\pi^-\pi^0\pi^0$   | 7.0                | 1.82                             | ±                 | $0.35 \pm 0.18$       |          |             |

low background/large acceptance

HL  $J/\psi$  factory: >5×10<sup>10</sup>  $\eta'$ 

# **Conclusions:**

Potential to test CPV in hyperon decays  $A_{\Lambda,\Xi} < 10^{-4} \text{ using } J/\psi \rightarrow B\overline{B}$  decays CKM estimate: (1-5)  $\cdot 10^{-5}$ BESIII :  $10^{10} J/\psi$ SCTF:  $2 \times 10^{12} J/\psi$ HL  $J/\psi$  Factory:  $> 10^{13} J/\psi$  (monochromator) + polarization (equivalent to  $\times 16$  more  $J/\psi \rightarrow \Lambda\overline{\Lambda}$  data)

 $J/\psi \rightarrow \Xi \overline{\Xi}$  measurement of  $\beta_{\Xi}$  and direct measurement of the weak phase difference

P. Adlarsson, AK Phys.Rev.D 100 (2019) 114005

Thank you!

- Work/White book: roadmap for CP violation observation in hyperons, strategy to deal with main syst uncertainties.
- Joint efforts with SCTF (extension, different detector concept)
- Hope for interest from Lattice/theory to calculate SM predictions for CPV in hyperons
- Other physics topics for HL  $J/\psi$  Factory