Physics Prospects of Belle II

Soeren Prell (Iowa State University) Rare and Precision Frontier Snowmass Town Hall Meeting October 2, 2020

On behalf of the US Belle II Collaboration

Belle II @ Snowmass 2021

9 Belle II/SuperKEKB LOIs (Letters of Interest) submitted, and posted at <u>https://confluence.desy.de/display/BI/Snowmass+2021</u>

- 1. Belle II/SuperKEKB upgrades and overview (AF05)
- 2. B physics at Belle II (RF01)
- 3. Charm Physics at Belle II (RF01, RF04)
- 4. Dark Sector at Belle II (RF06)
- 5. Tau Physics and Precision Electroweak Physics with Polarized Beams at SuperKEKB/Belle II (RF01-03, RF05-06, EF04, AF05)
- 6. Hadron Spectroscopy at Belle II (RF07)
- 7. Belle II/SuperKEKB capabilities for QCD (EF05-06, RF03)
- 8. Belle II Detector Upgrades (plans for the instrumentation frontier) (IF02-07)
- 9. Belle II plans for the computing frontier (CF03, CF05, CF07)

Several topical talks

EF06 Kick-off: <u>Summary of proposed Belle II activities: Charmonium, Bottomonium, and XYZ states</u>, Fulsom EF06 Topical Group Meeting: <u>Belle II Overview (Hadron Spectroscopy</u>), Fulsom Preparatory Joint Sessions on Open Questions and New Ideas: <u>Hadron Spectroscopy (includes Belle II</u>), Fulsom RF5 WS CLFV - Tau Decays and Transitions: <u>Tau LFV decays at Belle II</u>, Banerjee

RF07 WS: Bottomonium (Experimental, includes Belle II), Pedlar

RF1/5 WS LFV and LUV in meson and baryon decays: <u>LFV+LFU in neutral-current b/c decays at Belle I</u>I, Trabelsi; <u>LFU in charged-current b decays at Belle II</u>, Bernlochner

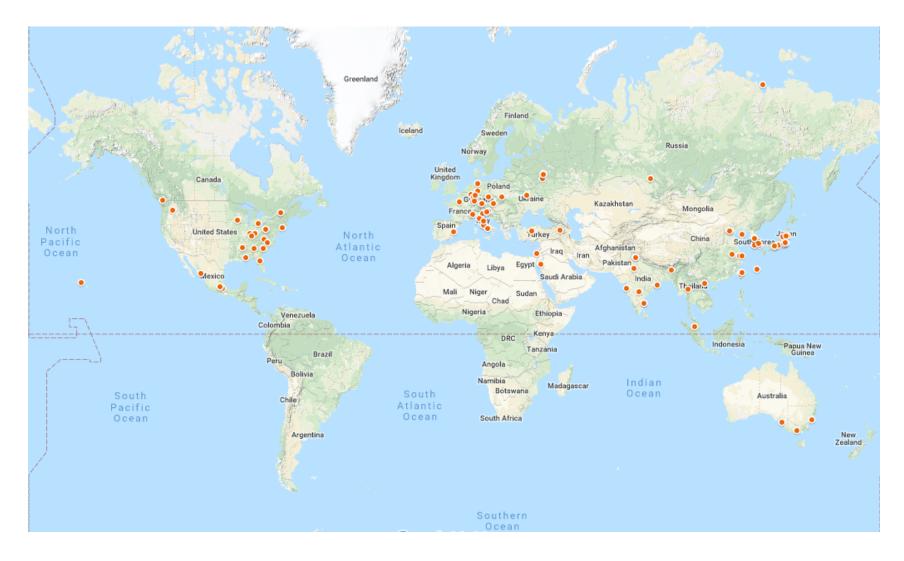
RF Town Hall meeting: CKM measurements and CPV in b decays at Belle II, Gaz;

<u>Rare b decays at Belle II</u>, Schwartz; <u>Charm physics at Belle II</u>, Bennett; <u>Hadron Spectoscopy at Belle I</u>, Fulsom; <u>Long-lived particles at Belle II</u>, Westhoff; <u>Dark sector studies at Belle I</u>, Flood; <u>CLFV in tau decays</u>, Banerjee

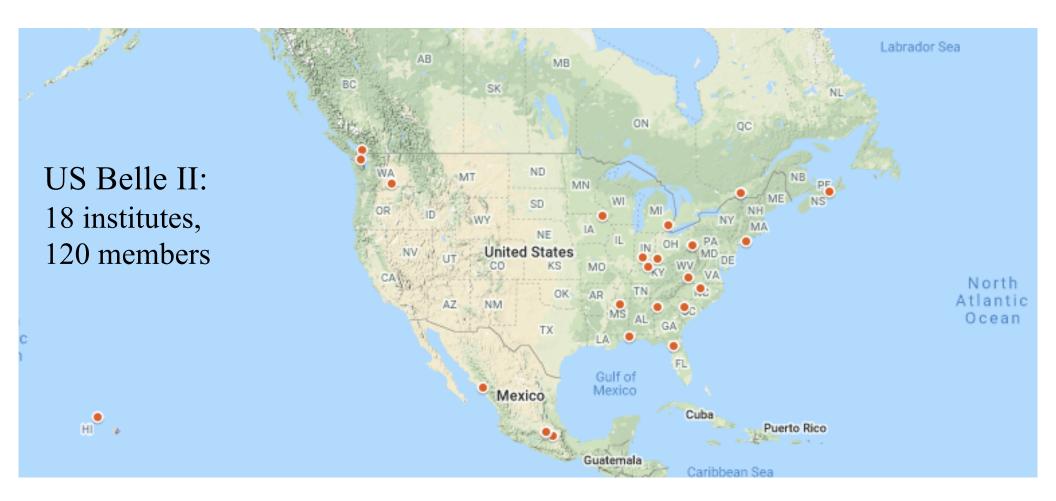
prolific

- Belle II is a multipurpose experiment at the SuperKEKB e^+e^- collider operating near the Y(4S) resonance, and located at KEK in Tsukuba, Japan
 - SuperKEKB/Belle II succeeds KEKB/Belle
 - Latest in a long series of successful experiments (ARGUS, CLEO, and B Factories BELLE & BABAR), that made many crucial discoveries
 - $B\overline{B}$ oscillations
 - $b \rightarrow u$ transition
 - radiative and EW B penguin decays ٠
 - *CP violation in the b sector*
 - charm mixing
 - Many new conventional and exotic states $(\eta_b, X(3872), Y(4260), Z^+(4430), D_{sl}(2317), ...)$
- Previous generation B factories BELLE & BABAR (1999 – 2008/10) have published together over 1,000 papers (for a comprehensive review see EPJC 74 (2014) 3026)
- BELLE II is expected to be similarly

The B Factories, Belle and BABAR, discovered large CP violation in the B system in 2001, compatible with the SM.


These provided the experimental foundation for the 2008 Nobel Prize to Kobayashi and Maskawa.

... Belle II's focus is shifted towards New Physics



The International Belle II collaboration (geographically)

Belle II has grown to ~1000 researchers from 26 countries Youth and potential: there are ~330 graduate students in the collaboration

Belle II Physics Prospects (S. Prell)

Brookhaven National Laboratory (BNL) Carnegie Mellon University Duke University Indiana University Iowa State University Kennesaw State University Luther College Pacific Northwest National Laboratory (PNNL) University of Cincinnati University of Florida University of Hawai'i University of Louisville University of Mississippi University of Pittsburgh University of South Alabama University of South Carolina Virginia Tech Wayne State University

Belle II Physics Prospects (S. Prell)

Belle II Detector

<u>KLong and muon detector</u> Resistive Plate Chambers (barrel outer layers) Scintillator + WLSF + SiPM's (end-caps , inner 2 barrel layers)

<u>EM Calorimeter</u> CsI(Tl), waveform sampling (barrel + endcap)

electrons (7 GeV)

Beryllium beam pipe 2cm diameter

<u>Vertex Detector</u> 2 layers pixel DEPFET + 4 layers DSSD

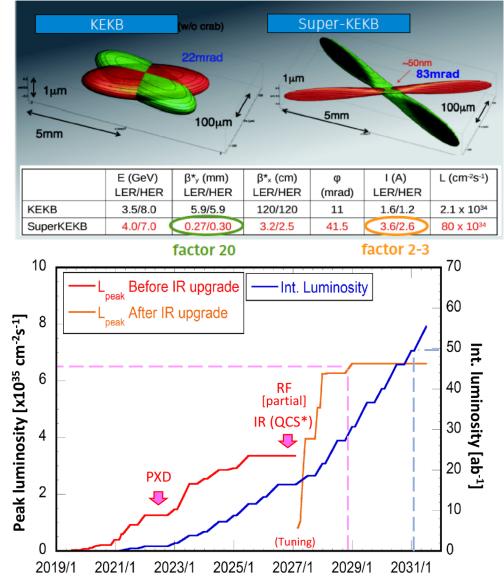
> Central Drift Chamber He(50%):C2H6(50%), small cells, long lever arm, fast electronics (Core element)

Particle Identification TOP detector system (barrel) Prox. focusing Aerogel RICH (fwd)

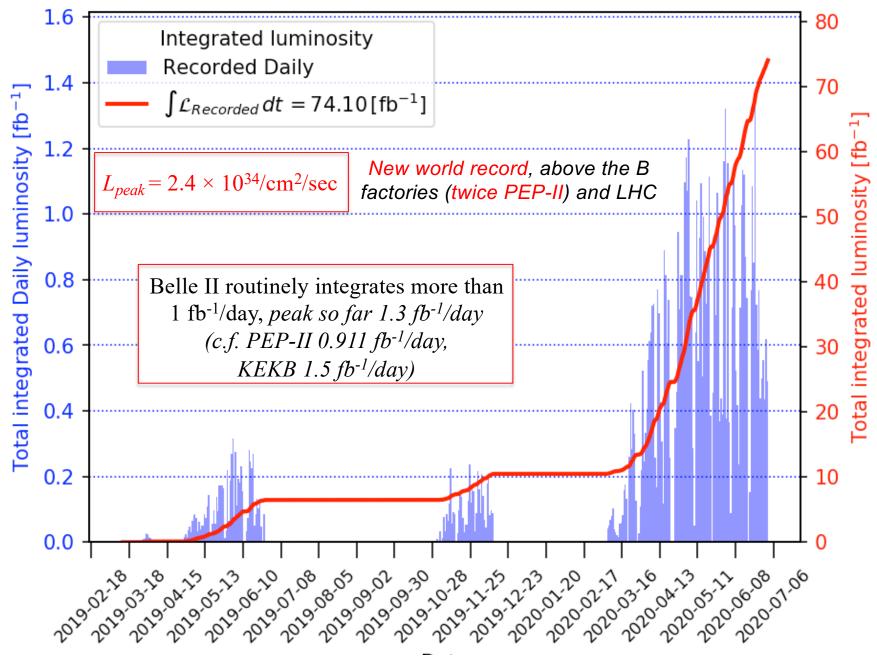
positrons (4 GeV)

Belle II reuses the structure, solenoid, CsI(TI) crystals, and part of the barrel RPCs from the original Belle detector.

SuperKEKB/Belle II Luminosity


The KEKB collider provided Belle with 1 ab⁻¹ between 1999 and 2010, SuperKEKB expected to deliver 50 ab⁻¹

"nano-beams" are the key; vertical beam size is 50 nm at the IP


Beam currents *only* a factor of 2-3 higher than KEKB (~ PEPII)

Superconducting Final Focus and IR (Interaction Region) need to be upgraded in ~2026

Luminosity profile has been recently updated

4 steps: *Intermediate luminosity* (1 × 10³⁵ /cm²/sec, 5 ab⁻¹) <u>High Luminosity</u> (6 × 10³⁵/cm²/sec, **50 ab⁻¹**) with a detector upgrade Polarization Upgrade, Advanced R&D Ultra high luminosity (4 × 10³⁶/cm²/sec, 250 ab⁻¹), R&D Project Early goal: Demonstrate SuperKEKB physics running with acceptable backgrounds, and all the detector, readout, DAQ and trigger capabilities of Belle II including tracking, electron/muon ID, and hadron PID

See also https://cerncourier.com/a/kek-reclaims-luminosity-record/

Belle II Physics Program

https://arxiv.org/abs/1808.10567

Outcome of the B2TIP (Belle II Theory Interface) Workshops Emphasis is on New Physics reach

Strong participation from theory community, lattice QCD community and Belle II experimenters

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

689 pages, published in Prog. Theor. Exp. Phys. (2019)

The Belle II Physics Book

E. Kou^{74,¶,†}, P. Urquijo^{143,§,†}, W. Altmannshofer^{133,¶}, F. Beaujean^{78,¶}, G. Bell^{120,¶}, M. Beneke^{112,¶}, I. I. Bigi^{146,¶}, F. Bishara^{148,16,¶}, M. Blanke^{49,50,¶}, C. Bobeth^{111,112,¶}, M. Bona^{150,¶}, N. Brambilla^{112,¶}, V. M. Braun^{43,¶}, J. Brod^{110,133,¶}, A. J. Buras^{113,¶}, H. Y. Cheng^{44,¶}, C. W. Chiang^{91,¶}, M. Ciuchini^{58,¶}, G. Colangelo^{126,¶}, H. Czyz^{154,29,¶}, A. Datta^{144,¶}, F. De Fazio^{52,¶}, T. Deppisch^{50,¶}, M. J. Dolan^{143,¶}, J. Evans^{133,¶}, S. Fajfer^{107,139,¶}, T. Feldmann^{120,¶}, S. Godfrey^{7,¶}, M. Gronau^{61,¶}, Y. Grossman^{15,¶}, F. K. Guo^{41,132,¶}, U. Haisch^{148,11,¶}, C. Hanhart^{21,¶}, S. Hashimoto^{30,26,¶}, S. Hirose^{88,¶}, J. Hisano^{88,89,¶}, L. Hofer^{125,¶}, M. Hoferichter^{166,¶}, W. S. Hou^{91,¶}, T. Huber^{120,¶}, S. Jaeger^{157,¶}, S. Jahn^{82,¶}, M. Jamin^{124,¶}, J. Jones^{102,¶}, M. Jung^{111,¶}, A. L. Kagan^{133,¶}, F. Kahlhoefer^{1,¶}, N. Kosnik^{107,139,¶}, T. Kaneko^{30,26,¶}, Z. Ligeti^{19,¶}, H. Logan^{7,¶}, C. D. Lu^{41,¶}, V. Lubicz^{151,¶}, F. Mahmoudi^{140,¶}, K. Maltman^{171,¶}, S. Mishima^{30,¶}, M. Misiak^{164,¶},

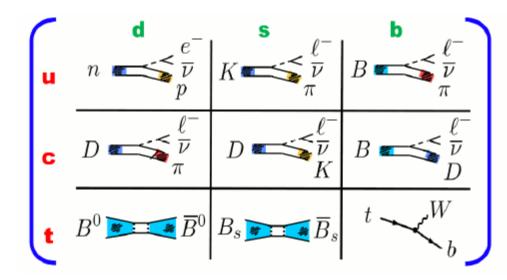
Big Questions and Belle II's avenues to address them

- Are there **new CP-violating phases** in the quark sector ? SM CPV cannot explain baryon-antibaryon asymmetry.
 - CPV in B loop decays and charm
- Does nature have *multiple Higgs bosons* ?
 - Flavor transitions involving the tau lepton $(B \to \tau v \& B \to D^{(*)} \tau v)$
- Does nature have a *left-right symmetry*, and are there flavor changing neutral currents beyond the SM ?
 - CPV in $B \to K^{*0}(K_s \pi^0)\gamma$; $B \to K^{(*)}vv$, angular variables in $b \to s, d l^+l^-$
- Are there sources of lepton flavor violation ?
 LFV τ decays
- Is there a **dark sector** of particle physics at the same mass scale as ordinary matter ?
 - Search for MeV GeV dark matter particles
- What is the **nature of the strong force** in binding hadrons?
 - In-depth study of recently discovered new states and search for new ones

Belle II, a Super Flavor Factory

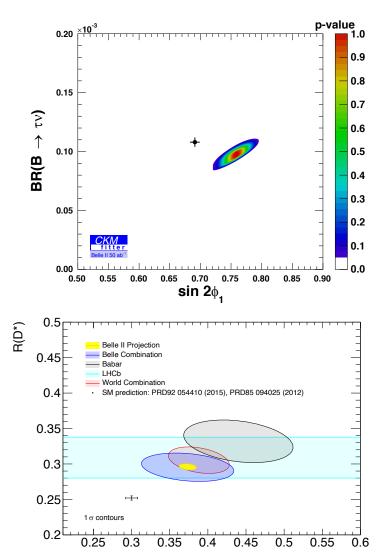
• plan to collect at least 50 ab^{-1} of asymmetric energy e^+e^- collisions at (*or near*) the Y(4S) resonance, which will give us:

- a Super B Factory (~ $1.1 \times 10^9 B\overline{B}$ pairs per ab⁻¹)

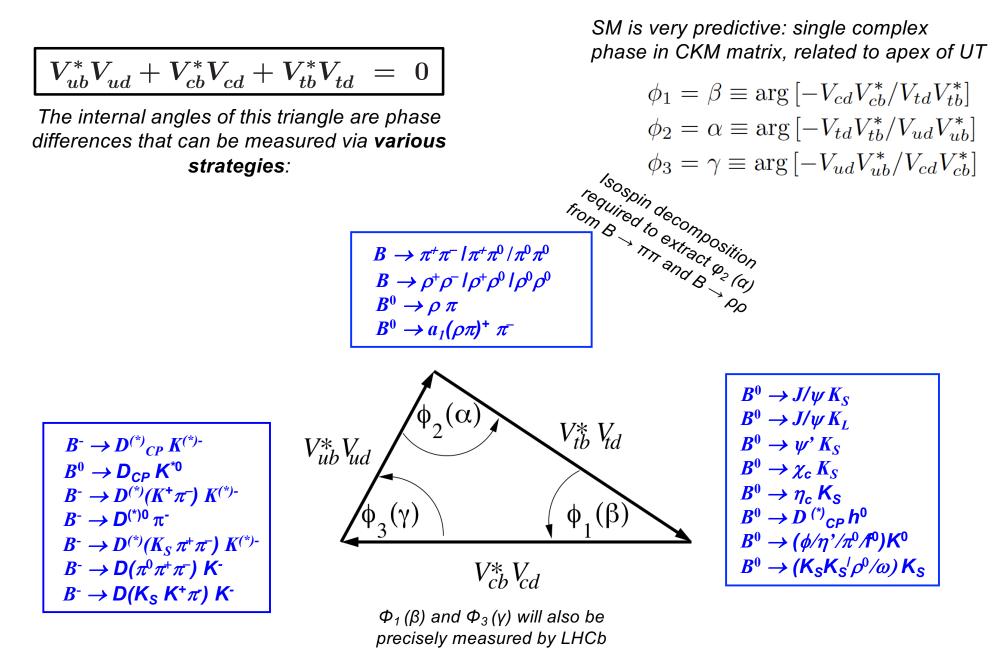


 $- a Super Charm Factory (~ 1.3 \times 10^{9} c\bar{c} pairs per ab^{-1}) \stackrel{e^{-}}{\xrightarrow{e^{+}}} \xrightarrow{\gamma^{*}} \stackrel{c}{\xrightarrow{c}} \stackrel{hadrons}{\xrightarrow{hadrons}} (but also charmonium, X, Y, Z, pentaquarks, tetraquarks, bottomonium, ...)$

- a Super τ Factory (~ 0.9 × 10⁹ $\tau^+\tau^-$ pairs per ab⁻¹)


– exploit the clean e⁺e⁻ environment to search for exotic
 hadrons, dark photons/Higgs, light Dark Matter particles, ALPs, LLPs ...

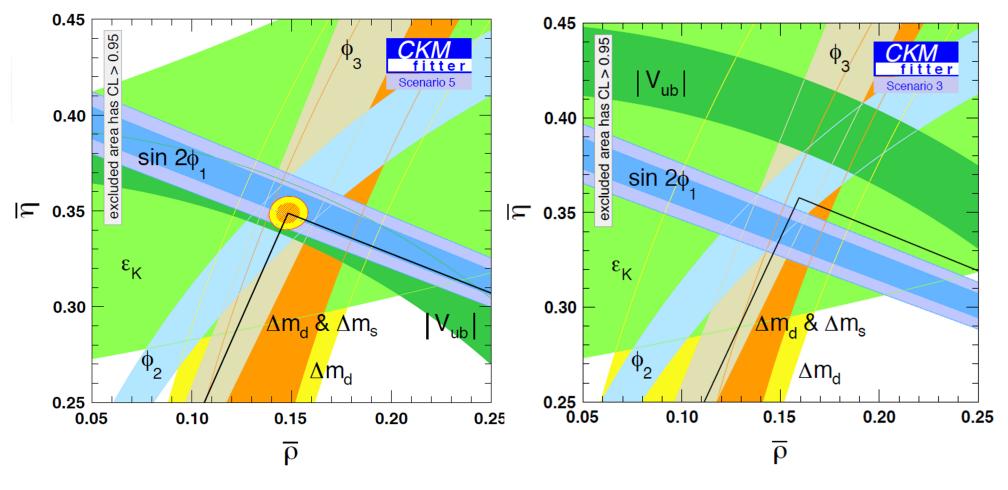
CKM Matrix: weak quark couplings



- $|V_{cb}|$ and $|V_{ub}|$ ($\Delta |V_{ub,expt.}| \sim 1\%$ expected) from semileptonic B decays with a variety of methods (excl./incl., full/partial reconstruction, untagged and had./SL tagged)
 - Measure $|V_{ub}|$ with $B \rightarrow \tau v$ as test of NP $(\Delta |V_{ub}| \sim 3\%$ for each had.+SL tagged measurement)
 - Precision measurements of $B \rightarrow D^{(*)} \tau v$
- $|V_{td}|$ and $|V_{ts}|$ from $B\overline{B}$ mixing and radiative and EW penguin decays
- $|V_{cd}|$ and $|V_{cs}|$ from leptonic and semileptonic $D_{(s)}$ decays, or use to test LQCD ($\Delta f(D_s) \sim 0.3\%$)
- $|V_{us}|$ from τ decays to strange final states

Testing CKM matrix unitarity: Belle II will provide input on the magnitudes of 7 out of 9 CKM matrix elements

SM CPV: CKM and Unitarity Triangle

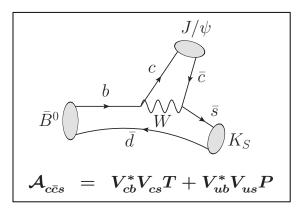


Belle II Physics Prospects (S. Prell)

Overconstraining the Unitarity Triangle

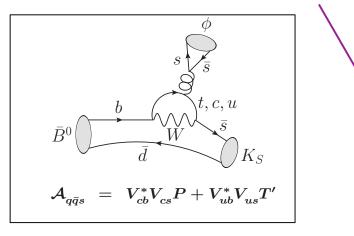
SM CPV too small to explain baryon-antibaryon asymmetry. Are there new CP violating phases in the quark sector?

 \Rightarrow Belle II will measure all 3 Unitarity Triangle angles ($sin2\phi_1, \phi_2, \phi_3$)

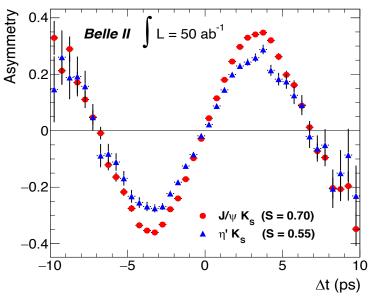

In ten years: no-tension SM ... or observation of New Physics ?

Belle II Physics Prospects (S. Prell)

Measurements of ϕ_1 (β)


 $B^0 \rightarrow J/\psi K_S$ (the "Golden" mode):

 \rightarrow constrains the UT



expected 50 ab^{-1} uncertainty: $\delta\phi_1 = 0.4^{\circ}$ (less than the current theory error of 1-2°)

$B^0 \rightarrow \phi K_S, \eta' K_S, \omega K_S, \pi^0 K_S$ ("penguin" modes):

Use time-dependent CPV measurement techniques pioneered by Belle & BABAR (boosted L=1 $B\overline{B}$ system, vertexing/ Δt with 2x better Δt resolution than Belle from pixel detector, and excellent B flavor tagging Q > 30%)

$$A_{CP} = A\cos(\Delta M \Delta t) + S\sin(\Delta M \Delta t)$$

		WA (2017)		5 ab^{-1}		50 ab^{-1}	
	Channel	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$	$\sigma(S)$	$\sigma(A)$
	$J/\psi K^0$	0.022	0.021	0.012	0.011	0.0052	0.0090
-	ϕK^0	0.12	0.14	0.048	0.035	0.020	0.011
	$\eta' K^0$	0.06	0.04	0.032	0.020	0.015	0.008
	ωK_S^0	0.21	0.14	0.08	0.06	0.024	0.020
	$K^0_S \pi^0 \gamma$	0.20	0.12	0.10	0.07	0.031	0.021
	$K_S^0 \pi^0$	0.17	0.10	0.09	0.06	0.028	0.018

Tree and penguin modes have same SM weak phase, but NP contributions in loop could contribute additional phases (**improve from 10-20% precision to 2-3%**)

Belle II Physics Prospects (S. Prell)

Measurements of $\phi_2(\alpha)$ and $\phi_3(\gamma)$

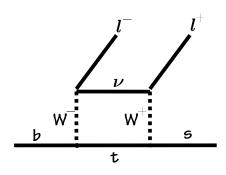
Measurement of φ_2 in $B \rightarrow \pi \pi$, 3π , $\rho \rho$

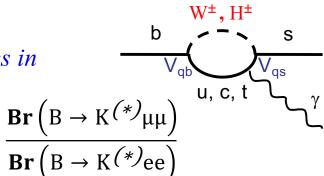
 ϕ_2 is determined from CP asymmetries and BFs of B $\rightarrow \pi\pi$, B $\rightarrow 3\pi$, and B $\rightarrow \rho\rho$ decays with an **isospin decomposition** of B⁺ and B⁰ decays **involving final states with** π^{0} 's

- Belle II has good π^0 efficiency
- Expt. errors reduced by 2× 10× depending on systematic error source
- Improved measurement of $A(B \rightarrow \pi^0 \pi^0)$ will reduce discrete ambiguities
- Expect error in φ₂ with 50/ab to be 0.6° (now 4.2°)

	Value	0.8 ab^{-1}	$50 { m ~ab^{-1}}$
$f_{L, ho^+ ho^-}$	0.988	$\pm 0.012 \pm 0.023$ [725]	$\pm 0.002\pm 0.003$
$f_{L, ho^0 ho^0}$	0.21	$\pm 0.20 \pm 0.15$ [729]	$\pm 0.03 \pm 0.02$
${\cal B}_{ ho^+ ho^-}$ [10-6]	28.3	$\pm 1.5 \pm 1.5$ [725]	$\pm 0.19 \pm 0.4$
${\cal B}_{ ho^0 ho^0}$ [10 ⁻⁶]	1.02	$\pm 0.30 \pm 0.15$ [729]	$\pm 0.04 \pm 0.02$
$A_{ ho^+ ho^-}$	0.00	$\pm 0.10 \pm 0.06$ [725]	$\pm 0.01 \pm 0.01$
$S_{ ho^+ ho^-}$	-0.13	$\pm 0.15 \pm 0.05 \ [725]$	$\pm 0.02 \pm 0.01$
	Value	0.08 ab^{-1}	$50 { m ~ab^{-1}}$
$f_{L, ho^+ ho^0}$	0.95	$\pm 0.11 \pm 0.02$ [716]	$\pm 0.004\pm 0.003$
${\cal B}_{ ho^+ ho^0}$ [10 ⁻⁶]	31.7	$\pm 7.1 \pm 5.3$ [716]	$\pm 0.3 \pm 0.5$
	Value	0.5 ab^{-1}	$50 { m ~ab^{-1}}$
$A_{ ho^0 ho^0}$	-0.2	$\pm 0.8 \pm 0.3$ [715]	$\pm 0.08 \pm 0.01$
$S_{ ho^0 ho^0}$	0.3	$\pm 0.7 \pm 0.2$ [715]	$\pm 0.07 \pm 0.01$

Precision measurement of ϕ_3 in $B \rightarrow D^{(*)}K^{(*)}$

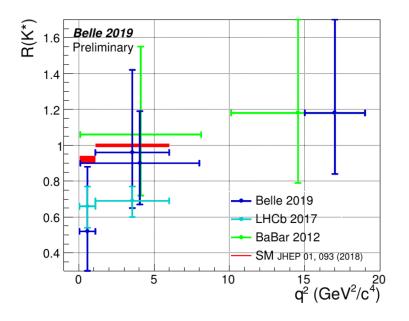

- Reconstruct D decays to CP eigenstates, Cabibbo-favored and singly and doubly Cabibbo-suppressed decays and self-conjugate modes
- Expect ϕ_3 error from GGSZ with 50/ab and strong phase measurement from BESIII to be 1.5° (WA 5°)


Type of D decay	Method name	D final states studied
CP-eigenstates	GLW	CP -even: K^+K^- , $\pi^+\pi^-$; CP -odd $K^0_S\pi^0$, $K^0_S\eta$
CF and DCS	ADS	$K^{\pm}\pi^{\mp}, K^{\pm}\pi^{\mp}\pi^{0}, (K^{\pm}\pi^{\mp}\pi^{+}\pi^{-})$
Self-conjugate	GGSZ	$K_S^0 \pi^+ \pi^-, (K_S^0 K^+ K^-), (\pi^+ \pi^- \pi^0), (K^+ K^- \pi^0),$
		$(\pi^+\pi^-\pi^+\pi^-)$
SCS	GLS	$(K^0_S K^{\pm} \pi^{\mp})$

Belle II Physics Prospects (S. Prell)

Rare radiative and EW Penguin B Decays

- Sensitive to NP contributing in the loop
- Belle II is uniquely sensitive to
 - *inclusive final states* $B \rightarrow X_{s,d} \gamma$ *and* $B \rightarrow X_{s,d} l^+ l^-$
 - final states with **photons**, neutrinos, or taus
 - ... and has **nearly equal μ and e efficiency** for LFU tests
 - B_{tag} reconstruction (FEI) improved $\times 2$ wrt Belle
- Measure BF, A_{CP} , A_{FB} , ΔA_{CP} , Δ_{0+} , and angular variables in incl. and excl. $B \rightarrow X_{s,d} \gamma$ and $B \rightarrow X_{s,d} l^+ l^-$ final states
- Determine R_K and R_{K*} with 3-4 % precision
- Expect Belle II to observe $B \to K^{(*)}vv$



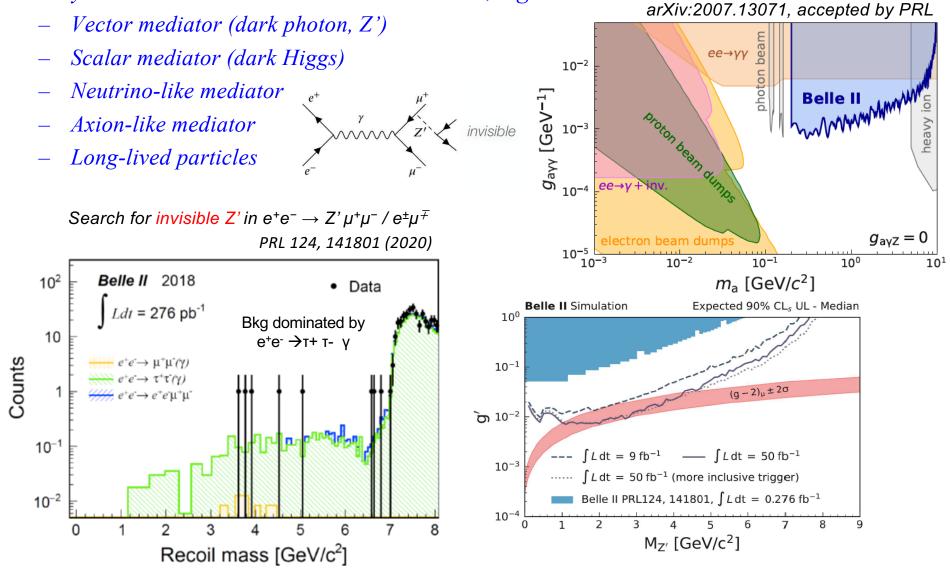
SM prediction very robust: $R_K(SM) = 1$

 $R_{K(*)} =$

[up to tiny QED and lepton mass effects]

Observables	Belle	Belle II	
	(2017)	5 ab^{-1}	50 ab^{-1}
$\mathcal{B}(B \to K^{*+} \nu \overline{\nu})$	$<40 imes10^{-6}$	25%	9%
$\mathcal{B}(B \to K^+ \nu \overline{\nu})$	$< 19 imes 10^{-6}$	30%	11%
$A_{CP}(B \to X_{s+d}\gamma) \ [10^{-2}]$	$2.2\pm4.0\pm0.8$	1.5	0.5
$S(B \to K_S^0 \pi^0 \gamma)$	$-0.10 \pm 0.31 \pm 0.07$	0.11	0.035
$S(B o ho \gamma)$	$-0.83 \pm 0.65 \pm 0.18$	0.23	0.07
$A_{FB}(B \to X_s \ell^+ \ell^-) \ (1 < q^2 < 3.5 \ {\rm GeV}^2/c^4)$	26%	10%	3%
$Br(B \rightarrow K^+ \mu^+ \mu^-)/Br(B \rightarrow K^+ e^+ e^-)$	28%	11%	4%
$(1 < q^2 < 6 \text{ GeV}^2/c^4)$			
$Br(B \to K^{*+}(892)\mu^+\mu^-)/Br(B \to$	24%	9%	3%
$K^{*+}(892)e^+e^-) \ (1 < q^2 < 6 \ { m GeV}^2/c^4)$			
$\mathcal{B}(B_s \to \gamma \gamma)$	$< 8.7 \times 10^{-6}$	23%	_
$\mathcal{B}(B_s \to \tau \tau) \ [10^{-3}]$	_	< 0.8	_

Belle II Physics Prospects (S. Prell)


New Physics in Charm Physics

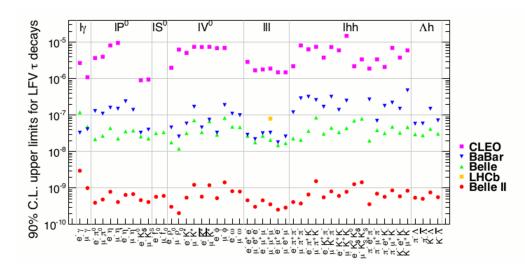
- 10¹¹ D decays in low-background environment
- Belle II will reduce errors of **D** mixing parameters x and y by factors >2 and > 3 resp., with $D \rightarrow K_S \pi^+ \pi^-$ Dalitz analysis
 - Errors are then systematics dominated
- Search for *indirect CPV* via q/p benefits from improved decay time resolution due to pixel detector
 - $\Delta arg(q/p)$ expected 4° (now 11°)
- Belle II will search for **direct CPV** in final states with neutrals
 - dCPV recently observed by LHC in all-charged final states KK and $\pi\pi$
- Study of rare radiative and EW penguin decays $D \rightarrow X \gamma$ and $D \rightarrow X l^+ l^-$

=	Channel	el Observable Belle/BaBar Measurement		Scaled			
-	Rare and Radiative Decays						
	$D^0 \rightarrow \rho^0 \gamma$	A_{CP}		$+0.056\pm0.152\pm0.006$	± 0.07	± 0.02	
	$D^0 \rightarrow \phi \gamma$	A_{CP}	0.943	$-0.094 \pm 0.066 \pm 0.001$	± 0.03	± 0.01	
_	$D^0 \to \overline{K}^{*0} \gamma$	A_{CP}		$-0.003\pm0.020\pm0.000$	± 0.01	± 0.003	
-	Mixing and Indirect (time-dependent) CP Violation						
	$D^0 \rightarrow K^+ \pi^-$	$x'^{2}(\%)$	0.976	0.009 ± 0.022	± 0.0075	± 0.0023	
	(no CPV)	$y^{\prime}\left(\% ight)$	0.970	0.46 ± 0.34	± 0.11	± 0.035	
		q/p	World Avg. [230]	$0.89^{+0.08}_{-0.07}$	± 0.20	± 0.05	
	(CPV allowed)	$\phi(^{\circ})$	with LHCb	$-12.9^{+9.9}_{-8.7}$	$\pm 16^{\circ}$	±5.7°	
-				$2.61^{+0.57}_{-0.68} \pm 0.39$		±0.080	
	$D^0 \to K^+ \pi^- \pi^0$	y''	0.384	$\begin{array}{r} -0.06 \\ -0.06 \\ -0.64 \\ \pm 0.34 \\ \end{array}$	-	± 0.070	
-		x (%)		$0.56 \pm 0.19 +0.04 \\ -0.08 $	± 0.16	±0.11	
		y (%)	0.921	$\begin{array}{c} -0.08 - 0.08 \\ 0.30 \pm 0.15 \begin{array}{c} +0.04 + 0.03 \\ -0.05 - 0.07 \end{array}$	± 0.10	± 0.05	
	$D^0 \to K^0_S \pi^+ \pi^-$	q/p		$0.90 \substack{+0.16 \\ -0.15 \ -0.04 \ -0.05}^{-0.03 \ -0.01}$	± 0.12	± 0.07	
		ϕ (°)		$-6 \pm 11 \pm 3 {+3 \atop -4}$	± 8	± 4	
=	Direct (time-integrated) CP Violation in %						
	$D^0 \rightarrow K^+ K^-$	A_{CP}	0.976	$-0.32 \pm 0.21 \pm 0.09$	± 0.10	± 0.03	
	$D^0 \rightarrow \pi^+ \pi^-$	A_{CP}	0.976	$+0.55 \pm 0.36 \pm 0.09$	± 0.16	± 0.05	
	$D^0 \to \pi^0 \pi^0$	A_{CP}	0.966	$-0.03 \pm 0.64 \pm 0.10$	± 0.28	± 0.09	
	$D^0 \rightarrow K^0_S \pi^0$	A_{CP}	0.966	$-0.21 \pm 0.16 \pm 0.07$	± 0.08	± 0.02	
	$D^0 \rightarrow K^0_S K^0_S$	A_{CP}	0.921	$-0.02 \pm 1.53 \pm 0.17$	± 0.66	± 0.23	
	$D^0 \to K^0_S \eta$	A_{CP}	0.791	$+0.54 \pm 0.51 \pm 0.16$	± 0.21	± 0.07	
	$D^0 \to K^0_S \eta'$	A_{CP}	0.791	$+0.98 \pm 0.67 \pm 0.14$	± 0.27	± 0.09	
	$D^0 \to \pi^+\pi^-\pi^0$	A_{CP}	0.532	$+0.43\pm1.30$	± 0.42	± 0.13	
	$D^0 \to K^+ \pi^- \pi^0$	A_{CP}	0.281	-0.60 ± 5.30	± 1.26	± 0.40	
_	$D^0 \to K^+ \pi^- \pi^+ \pi^-$	A_{CP}	0.281	-1.80 ± 4.40	± 1.04	± 0.33	
	$D^+ \to \phi \pi^+$	A_{CP}	0.955	$+0.51 \pm 0.28 \pm 0.05$	± 0.12	± 0.04	
	$D^+ \to \pi^+ \pi^0$	A_{CP}	0.921	$+2.31 \pm 1.24 \pm 0.23$	± 0.54	± 0.17	
	$D^+ \to \eta \pi^+$	A_{CP}	0.791	$+1.74 \pm 1.13 \pm 0.19$	± 0.46	± 0.14	
	$D^+ \rightarrow \eta' \pi^+$	A_{CP}	0.791	$-0.12 \pm 1.12 \pm 0.17$	± 0.45	± 0.14	
	$D^+ \to K_S^0 \pi^+$	A_{CP}	0.977	$-0.36 \pm 0.09 \pm 0.07$	± 0.05	± 0.02	
_	$D^+ \to K^0_S K^+$	A_{CP}	0.977	$-0.25 \pm 0.28 \pm 0.14$	± 0.14	± 0.04	
	$D_s^+ \to K_S^0 \pi^+$	A_{CP}	0.673	$+5.45 \pm 2.50 \pm 0.33$	± 0.93	± 0.29	
_	$D_s^+ \to K_S^0 K^+$	A_{CP}	0.673	$+0.12\pm 0.36\pm 0.22$	± 0.15	± 0.05	

Dark Sector Searches

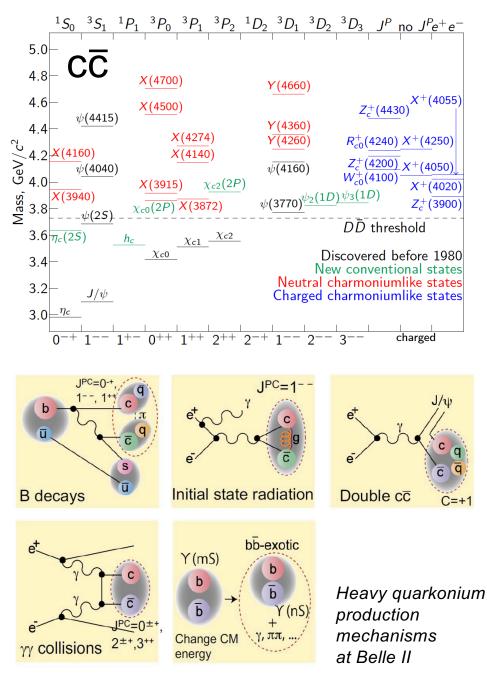
- DS searches at Belle II benefit from large data sample, clean e⁺e⁻ environment, and special high-efficiency triggers for low-multiplicity final states
- Many **DS benchmark models** will be studied, e.g.

Belle II Physics Prospects (S. Prell)


Snowmass RF Townhall Meeting

Search for ALP in $e^+e^- \rightarrow a(\gamma\gamma)\gamma$

New Physics Searches with τ leptons


Model	Reference	т→µү	т→µµµ
SM+ v oscillations	EPJ C8 (1999) 513	10-40	10-14
SM+ heavy Maj v _R	PRD 66 (2002) 034008	10 ⁻⁹	10-10
Non-universal Z'	PLB 547 (2002) 252	10 ⁻⁹	10-8
SUSY SO(10)	PRD 68 (2003) 033012	10-8	10-10
mSUGRA+seesaw	PRD 66 (2002) 115013	10-7	10 ⁻⁹
SUSY Higgs	PLB 566 (2003) 217	10-10	10-7

Many extensions of the SM include cLFV

- Belle II is sensitive to charged LFV in τ decays at BFs of 10^{-9} to a few 10^{-10}
 - NP models predict cLFV at 10^{-7} - 10^{-10}
- Search for NP contributions to isospinsuppressed 2nd class currents
- Limit τ electric and magnetic moments through precise measurements of Michel parameters in leptonic and radiative decays several orders of magnitude below current bounds
- Search for new **CP-violating couplings** in τ decays
- Sensitivities could be improved with beam polarization upgrade

Hadron Spectroscopy

Belle II Physics Prospects (S. Prell)

Plethora of new exotic **Charmonium** states

- Many new states discovered by Belle and other experiments (X(3872), Y(4260), $Z_c^+(4430),...)$
- Several do not fit into the conventional framework
- Belle II will also study new
 - **bottomonium** states (such as $Z_b^+(10610/50)$ at the Y(5S))
 - open-charm excited states
 - charm baryons
 - exotic light quark states (e.g. glueballs)

Understand how QCD forms these exotic states

 At Belle II states are produced in a wide
 variety of processes (B decays, ISR, γγ, double-charmonium events, ...)

Snowmass RF Townhall Meeting

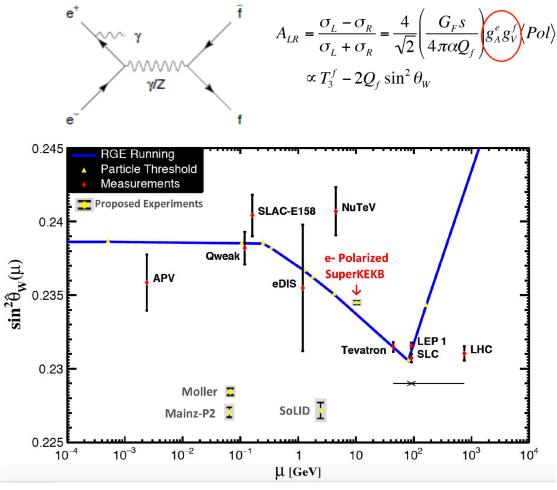
٠

Precision Neutral Current Electroweak Program with SuperKEKB Upgraded to have Polarized e⁻ Beams

At 10.58 GeV, e⁻ polarization enables A_{LR} measurements sensitive to Z- γ interference;

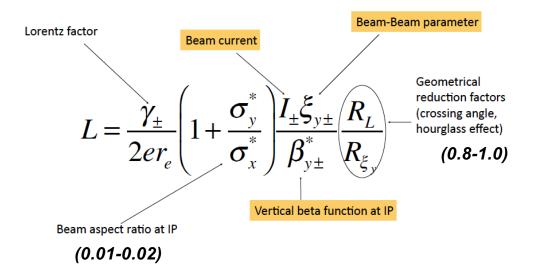
20 ab⁻¹ and 70% polarization at IP gives:

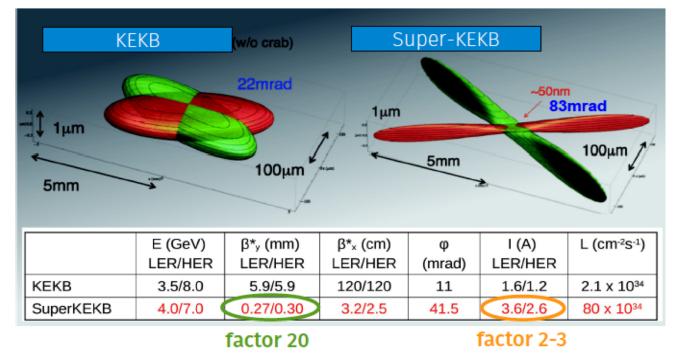
- World's most precise sin²θ_W (σ_{sin2θW} ~ 0.00016) and probe of its running
- Unprecedented and clean NC universality studies for e, μ, τ, b and c since beam polarization error cancels (e.g. < 0.05% relative error for b-to-c, *cf* 4% now)
- $sin^2\theta_W$ with light quarks at 10.58 GeV
- Sensitivity to Z' > TeV scale and dark sector parity-violating Z'_D below M_Z

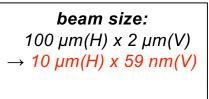

Beyond EW e- polarization at SuperKEKB:

- enables more precise τ EDM and $(g\text{-}2)_{\tau},$

- can be used to probe dynamical mass generation in QCD via polarized Λ

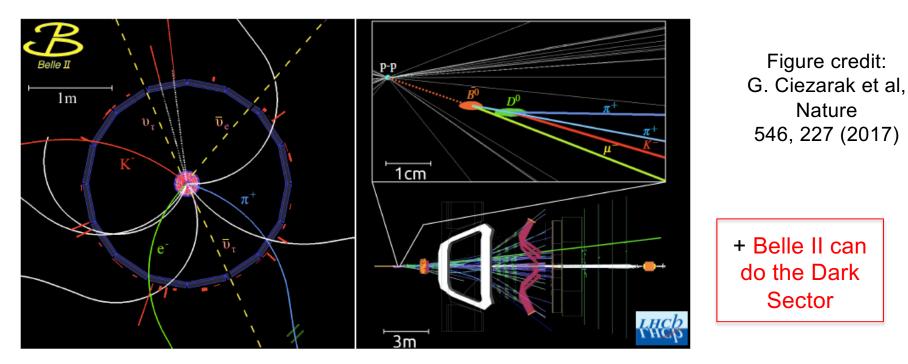

More information at arxiv.org/abs/1907.03503


Conclusions


- Belle II is an active and important Super Flavor Factory with a large US contribution
 - covers a broad physics spectrum with many crucial and unique measurements
 - *CPV and rare decays of charm and bottom, exotic states, Dark Sector, LFV, ...*
 - already produces world class results on Dark Sector searches with < 1% of expected data set
- Expected to record 50 ab⁻¹(50x the Belle data set) over the next decade
- Upgrades to the detector and accelerator are necessary to reach full potential

Back-Up Slides

How to get 50x integrated luminosity?



Belle-II Goal: 40 x Belle = 8 x 10³⁵

Belle II Physics Prospects (S. Prell)

FAQ: How do Belle II and LHCb capabilities compare ?

 LHCB has a large b bbar cross-section (hundreds of microbarns versus nanobarns) and good sensitivity, signal to background, for modes with dimuons, and all charged final states using vertexing. Triggering and flavor tagging effs. are much lower than in e⁺e⁻.

Rule of thumb for statistics in this case: 1 fb⁻¹ at LHCb is 1 ab⁻¹ at Belle II. (\rightarrow Need good SuperKEKB performance) 2. Belle II has a simple event environment with B-anti B pairs produced in a coherent QM state with no additional particles.

- 3. Belle II can measure inclusive processes
- 4. Belle II can measure electrons as well as muons. (important for lepton universality checks).

5. Belle II can measure final states with gamma's, Kshorts and missing neutrinos well.