Study of pion and eta decays

Tomáš Husek (Lund University)

In collaboration with

K. Kampf (Charles U.), J. Bijnens and A. Rodríguez-Sánchez (Lund U.)

The physics / basic idea of the LOI

- Neutral pion: the lightest meson
 - Prominent role for studying low-energy properties of strong interaction
 - $\pi^0 \gamma^{(*)} \gamma^{(*)}$ vertex described by electromagnetic TFF
 - Can be extracted studying various decay channels $(\pi^0 \to e^+e^-\gamma, \pi^0 \to e^+e^-)$
 - Probes π^0 structure, enters HLbL scattering contribution to g-2
- Study hidden physics in low-energy QCD sector
 - Right-handed currents: V. Bernard, M. Oertel, E. Passemar and J. Stern, JHEP 01, 015 (2008)
 - Axion: see, e.g., very recent Daniele S. M. Alves, arXiv:2009.05578 [hep-ph]
 - ...
 - Several hints already present in data
- Manifest via small deviations from SM predictions
 - $\pi^0 \rightarrow e^+e^- (3.3 \sigma \rightarrow \approx 2 \sigma)$
 - $g 2 (3.6 \sigma)$
 - F_{π} obtained from EM (2 γ) decay (or from lattice) vs. weak decay (\hat{F}_{π})
 - $F_{\pi}^2 = \hat{F}_{\pi}^2(1+\epsilon)$
- Above π^0 decay modes can be extended to corresponding η (or kaon) decays
 - Interesting physics expected in $\eta \to \gamma \gamma$
 - Anomaly, chiral corrections, two-loop corrections
 - Important for precise calculation of $\pi^0 \to \gamma \gamma$
 - Measurement planned at JLab

What is required for the LOI to succeed

- Precise measurements hand in hand with precise calculations
- Radiative corrections now ready for many channels
 - $\pi^0 \rightarrow \gamma \gamma$: K. Kampf, B. Moussallam (2009)
 - $\pi^0 \rightarrow e^+e^-\gamma$: K. Kampf, M. Knecht, J. Novotný (2006), TH, K. Kampf, J. Novotný (2015), TH, E. Goudzovski, K. Kampf (2019)
 - $\pi^0 \rightarrow e^+e^-e^+e^-$: K. Kampf, J. Novotný, P. Sanchez-Puertas (2018)
 - $\pi^0 \rightarrow e^+e^-$: P. Vaško, J. Novotný (2011), TH, K. Kampf, J. Novotný (2014), TH, S. Leupold (2015)
 - $\eta^{(\prime)} \rightarrow \ell^+ \ell^- \gamma$: TH, K. Kampf, S. Leupold and J. Novotný (2018)
- Under preparation
 - e.g., $\eta \to \gamma \gamma$: may be crucial for π^0 and η program at JLab
- No new facilities required → stronger dedication at the existing ones
 - Typically, these processes are not the prime goals at related experiments
 - Example: $\pi^0 \rightarrow e^+e^-$
 - Measure independently and compare to the KTeV result
 - Accessible at NA62, although suppressed by trigger settings
 - Extract $\chi^{(r)}(M_o)$: universal for $P \to \ell^+ \ell^-$ (assuming LFU), compare to $\chi^{(r)}$ from $K_L \to \mu^+ \mu^-$
 - Example: $\pi^0 \rightarrow e^+e^-\gamma$
 - Measure a_{π} more precisely
 - Discrepancy in $R = \Gamma(\pi^0 \to e^+e^-\gamma)/\Gamma(\pi^0 \to \gamma\gamma)$ between model-independent calculation and KTeV
 - Abouzaid et al., Phys. Rev. D 100 (2019)

What do you plan to do during Snowmass

- It is vital to deepen and extend our knowledge regarding $\pi^0/\eta \gamma^{(*)} \gamma^{(*)}$ vertex
 - Further theoretical (including BSM) and phenomenological studies of pion decays
 - $\pi^0 \rightarrow \gamma \gamma$, $\pi^0 \rightarrow e^+e^-\gamma$, $\pi^0 \rightarrow e^+e^-$, $\pi_{\ell 2}$, ...

and related eta decays

- Interplay with rich experimental program in this area
- Confirmation of discrepancies or their disappearance expected
- Schedule for next half a year
 - Proceed on the $\eta \to \gamma \gamma$ calculation
 - Preliminary results on $\pi^0 \rightarrow e^+e^-$ from NA62
 - In parallel, first results from g-2 should be available

What do you hope to get out of Snowmass

- Promote close collaboration between phenomenologists, lattice groups and experiments
 - NA62 at CERN
 - PrimEx(-II) and JEF at JLab
 - REDTOP at Fermilab
 - KLOE-2 at DAФNE
 - •
- Further studies from different points of view
 - Resolve discrepancies between SM prediction and experiment
 - Or their better/deeper understanding
 - Extract hadronic quantities more precisely from data
- Feedback from experiments
 - What might be interesting we concentrate on